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ABSTRACT 
 

 
The purpose of this project is to design an autonomous parallel parking algorithm 
implemented on a Pioneer 1 series mobile robot.  This algorithm employs the robot’s 
laser scanner to obtain data from the environment and use this data to execute a parallel 
parking maneuver.  This maneuver is constrained to the kinematics of an actual 
automobile and enables the robot to both park and unpark on its own.  The design and 
strategy including a brief explanation of the mathematical equations used in the algorithm 
are discussed. 
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INTRODUCTION 
 
With the proper algorithm and equipment, many aspects of driving can be automated. On 
average, each parked car requires 300 square feet of space allowing for room to enter and 
exit.  Because of this, between 25% to as much as 60% of the urban landscape is devoted 
to automobile use.  Americans spend $68 billion for parking and storage each year 
(AAMA).  Because of this, a parallel parking algorithm is worth pursuing.  Not only 
would it save space, but would also save time, money, and headache caused by minor 
accidents between parked cars while attempting to park. 
 
To employ our parallel parking algorithm on an actual automobile, we must constrain the 
Pioneer 1 robot’s kinematics.  The robot does not use Ackerman steering as an 
automobile does (does not turn with a fixed axle) but instead uses wheel differential.  The 
difference in rotation between the front two wheels rotates the robot around its center of 
rotation.  Our algorithm will emulate Ackerman steering and parallel park the tri-wheeled 
robot while only using the front two wheel differentials for steering. 
 
A second task is to detect the dimensions of the surrounding environment using the 
Pioneer robot’s laser scanning capabilities.  Identification of the size and depth of the 
parking slot to determine if there is sufficient space for parking is paramount.  Once a 
favorable space is found, the robot will move towards the slot on a backwards tightly-
defined path.  The desired path will take into consideration the parking area’s dimension 
to create an efficient maneuver and reduce the time needed to park.  If the robot cannot 
park in a single movement, corrections are then performed. 
 
OVERALL STRATEGY 
 
The task of programming the Pioneer 1 series robot to autonomously park has been 
broken down into several sections. The modularization of this goal allows the team to 
assess and complete smaller tasks individually. This is an aide not only during the design 
stage but also during the debug and post-completion stages. It provides an effective way 
to change or correct one portion of our design without the need to adjust other portions. 
The four tasks that need to be completed successfully in order to park are as follows. 
 
Region Mapping. The Pioneer must scan the area, as it is moving along a preprogrammed 
trajectory. This will provide a mapping of the region, and the detection of any nearby 
obstacles. Given that no obstacles are encountered, the Pioneer will continue on its path 
looking for parking spots. 
 
Parking Spot Detection, and Assessment. Once an opening in a row of parked robots is 
found, the Pioneer will determine if it is suitable by measuring its length and width. No 
height measurements will be taken into account. Measurements will be done by driving 
by the opening.  
 
Parking. After driving past an open spot and measuring its dimensions, the Pioneer will 
be in position to park. The trajectory used to enter the spot will be modeled closely on the 
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arc that a full sized automobile follows as it parallel parks. The mechanics of turning will 
also be limited to those of an automobile. This is important because the Pioneer has much 
larger range of motion than a car does.  
 
Exiting the Spot. When the Pioneer has fully parked, it can exit the parking spot. This will 
be done under the assumption that nothing out of the robots sensor range has moved. The 
exit trajectory will also be modeled from the movements of a car.  
 
PROJECT SCHEDULE 
 
Project tasks were broken down as follows: 
Lisa Sullivan – Constructed map of parking area using laser data. 
Christopher Wiens – Estimated position and orientation of robot using laser data. 
Mun Hoe Sze Tho and Trenton Palm – Determined parameters of the trajectory the robot 

must follow and controlled robot to follow this trajectory while moving with the 
kinematic constrains of an actual automobile. 

Joel Hesch – Integrated program modules and test algorithm. 
 
Included in the appendix is a Gantt chart showing task completion. 
 

DESIGN APPROACH 
 
Region Mapping and Parking Spot Detection 

 

Prior to parking, the robot drives and aligns itself to the middle of the lane. This 
alignment is done using laser data from the scanner. If the robot is outside the center zone 
adjustments are made to the heading of the robot based on the difference between the 
closest point on the right, and the closest point on the left hand side of the robot. If the 
robot is within 30 cm of the center of the room, then its heading is set to 0 degrees 
(straight ahead), and no further adjustments take place until it exits the center zone. This 
is illustrated in the following figure. The equations which govern this heading adjustment 
are: 
Outside center zone:  deltaHeading = 35 * ( ( distanceDelta ) / ( distLeft + distRight ) ) 
Inside center zone:  deltaHeading = angleDelta 
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As the robot travels down a lane, it avoids obstacles in real time. When the robot detects 
a row of parked cars, it goes from the avoidance state to the align state. The align state 
merely involves having the robot align itself parallel to the parked cars with a suitable 
gap between it and the other cars to ensure accurate laser data.  
 
The key point of the transition of state zero to state one is that the robot must recognize 
the difference between objects it must avoid and the row of parked cars. A counter was 
created determining if a vertical line had been detected. The first time a vertical line was 
detected, was an indicator to the robot to start align itself to the cars.   
 

  Action             Y-axis 
                       Robot 

                           D1 = dist.               X-axis 
                      Robot to car1                   D = Depth 
                                                        L =  Length 

 

 
1st parked car       Wall  2nd parked car  

  

 
For convenience the laser scanner data was converted from cylindrical coordinates into 
rectangular coordinates. Then, by using line regression techniques (Cornell), the slope of 
a line was found between each point. Since sigma was necessary for all the line 
regression equations, sigma values had to be assigned to each point. Since the line 
regressions were inversely proportional, the smaller the sigma, the more important the 
data. Thus the data was divided up into three regions: within four meters, within eight 
meters and greater than eight meters. Any data determined to be greater than eight meters 
away was thrown due to the great deal of inaccuracies associated with it. Also, any data 
that would create a divide by zero error in the determination of the slope between two 
points was also discarded. 
 
After the slope between all points was found, best-fit techniques needed to be added to 
decrease the number of total lines. Assuming that a row of cars would be on the right 
hand side of the robot, only the data involving the right hand side was used.  Three 
separate chunks of code were used to determine three different lines, which were a 
vertical line, a horizontal line or a diagonal line. If a set of four pairs or more fell into one 
of these categories, the first point of the first set and the second point of the last set were 
determined to be the respective beginning and end of a line. The overall slope of the line 
was thus equal to the quantity of the last y coordinate minus the first y coordinate divided 
by the quantity of the last x coordinate minus the first x coordinate. 
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The charts on the next page show the comparison of the end result of line fitting 
techniques (the bottom one) to the raw laser scan data (the top one). This laser scan was 
taken just before the robot began the parking maneuvers. All distances are in relation to 
the robot sitting at the origin about to move in the positive x direction. The data from 
both charts were outputted into a text file, before being translated into an excel 
spreadsheet. Thus the charts are merely a graphical representation of what the robots 
sees. 
 
The other function of this code was that since the laser data was inaccurate for very close 
distances, the robot needed a key landmark to have a sense of where it was within the 
space. Thus the corners of the line representing the back bumper of the second car 
became the key landmarks. 

 



 7 

Trajectory Calculation/Parking 
 
When the robot is moving parallel to the wall, the front left edge of the first parked robot 
is fixed as the origin of the Cartesian coordinates which we will use. As the robot moves 
along, it will measure the depth of the parking spot which has to be at least W + є (W is 
width of robot and є ≈ 5cm). The length of the parking spot is Lp + 10cm and Lp has to be 
at least one and a half times the length L of the robot (1.5 x 48.26cm = 72.39cm). When 
the robot has moved the entire length of the parking spot, it will aligned itself to the 
second parked robot and initiate its parallel parking trajectory using the parameters 
obtained from the time it initially detects the first parked robot until it gets ready to park.  
We use two semicircles to model the robot’s parallel parking trajectory (see figures on 
next page). From Ackerman’s Steering Theorem, the distance between the point located 
at half width of the robot aligned with the two front wheels to the center of radius is R. 
Also, the maximum turning angle of the inner wheel is 37º and given by the equation θi = 
atan(L/R) (L is length of robot) (Modelica). The turning angle of the outer wheel is given 
by θo = atan(L/(W + R)) and θi > θo. with θi given as 37º: 
 

 
First half of trajectory 

 
R = L/tan θi 

    = 48.26cm / tan 37º 
    = 64.04cm = L2 + h where h = [(L2)

2 – (L1)
2] / 2L2 

For the first half of the trajectory, the robot will turn with turning radius of R where the 
center of the circle is located a distance R – L2 from the x-axis.  
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This trajectory will be terminated once the robot has traveled a horizontal distance of L1.  
The distance S1 which it has traveled corresponds to the angle Φ2. This angle can be 
calculated by finding Φ1: 
Φ2 = cos-1(R – L2) / R 
 
Then, S1 = R Φ2. 

 
For the second half of the trajectory, the robot will turn in a semicircle again but this time 
in the opposite way but with the same turning radius, R. This is shown on the following 
page. The trajectory will be terminated once the robot has traveled a horizontal distance 
of L1 as described in the first half of the trajectory. This means that the vertical line along 
the center of both front wheels should be at a horizontal distance of 23.5cm + ε from the 
front of the left robot. 
 
Also, the distance S2 which the robot has traveled corresponds to the angle Φ3: 
Φ3 = cos-1(R – L2) / R 
 
S2 = R Φ3  
 
 

 
Second half of trajectory 
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After completing the whole trajectory, the robot is not yet centered in the parking spot 
due to minor errors in the laser scanners of the robot. Therefore, several corrections have 
to be made and these corrections are the exact same trajectory as described in this figure 
that they are carried out in the opposite direction until the robot is centered within the 
parking spot. 
 
                                                                                                                                                       ICC  
 

                                                                                        ICC                                                                 
                                                                                                                                               θ 
                                     Action Robot   

                                                                                        θ  
 
                                                                 In itial                                   Lparea2 
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       1st                                                                                                                                                                                                                                                          2nd 
       Parked                                                                                                                    L1’                                 Parked 

       Car                                                                                                                                                                Car 
 
                           E 

 
 
 

                                                                      Final 
                                                                       Position 
 

                                                                                        θ 
 
                              WALL                                                ICC 

               Lparea2 = Lp – Lr – 2E                                                                                           θ 
               L1’ = Lparea2 / 2 
               θ = asin (L1’ /  R)                                                                                                            ICC 

               S’ = R * θ 

 
 
In the beginning of our design process, we proposed to use two semicircles for our 
trajectory. However, both these semicircles are not exactly half circles due to the 
dimensions of our robot as well as the constraints imposed by the Ackerman’s Steering 
Theorem. This trajectory is measured relative to the rear of the robot. The first half of the 
trajectory is smaller than the second half as we can see from the figure on the following 
page. The first “semicircle” is terminated once it has traveled a horizontal distance of 
one-half of the length of the parking spot. The second “semicircle” is terminated when it 
is a distance of 5cm from the parked robot on the left.  
 
Referring to the figure on the following page, the trajectory has a sharp discontinuity at 
the point when the first half of the trajectory is terminated. In real life, this can not be 
achieved by the robot because its orientation is parallel to the tangent of the first curve. In 
order to be oriented parallel to the tangent of the second curve, it has to rotate on its own 
axis which is not within the constraints of a real car. Therefore, this trajectory is ruled out 
of our design. Included in the appendix is Matlab code to simulate this curve. 
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Initial trajectory 
 
The “safety” trajectory is used as a backup just in case our main trajectory fails. Referring 
to Figure 4, the discontinuity which exists in our initial trajectory has been eliminated and 
the point where the first half of the trajectory is terminated is now smooth. However, this 
trajectory uses a turning angle of 50 degrees, which is not within the constraints of a real 
car. Included in the appendix is the Matlab code used for the “safety” trajectory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

“Safety” trajectory 
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Wheel Velocity 

 
The next thing that our project has to take into consideration is the velocity on each wheel 
while following the trajectory curve. One of the objectives of the project is to get the 
robot to model an actual car. On an actual car both wheels turn with the same velocity. 
When a car is turning a corner, geometry suggests that the outer wheel has to travel a 
greater distance than the inner wheel. Because of this, automobiles use the Ackermann 
steering system. This system makes the wheels turn at different angles to account for the 
larger distance of the outer wheel. The angle on the inner wheel is defined as atan(L/R) 
and the angle of the outer wheel is defined as atan(L/(W+R) where R is the turning radius 
of the inner wheel, b is the track width, and L is the wheel base[2].  
 
 
          

 

                                                                                                              θo  

                                                                θi 
 
 
 
 
                                                               L = Length of Wheel Base 

 

 
 
 

 
     Center of radius           R                                W = width of car    

 
Because of the fact that the two motorized wheels on the robot used in this project 
operate at different velocities we simply have to make the outer wheel go at a greater 
velocity to account for the greater distance that is has to travel. The figure shows a simple 
diagram showing that the outer wheel has to travel a greater distance for a designated 

curve. As you can see the inner tire has to travel a distance πR/2 and the outer tire must 

travel π(R + A)/2.  
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Exiting the Parking Spot 

 
In order to exit the parking spot, our robot is going to follow the same trajectory that it 
used to enter the spot. It will simply follow the curve in the opposite direction that it uses 
to enter the spot including the correction curves. 
 
POTENTIAL RISKS AND SOLUTIONS 
 
Our team was fortunate to not undergo a robot malfunction.  If the robot did malfunction, 
a graduate student is assigned to repair or replace the offending components.  A second 
Pioneer 1 series robot was available in case the components could not be repaired in time 
for a deadline.  If the laptop computer controlling the robot should have failed, a backup 
algorithm on a different computer would have been employed.  In order to correct and 
refine our code, team members cooperated to provide fresh ideas and advice. 
 
 
CONCLUSION 
 
To create an algorithm to parallel park a Pioneer 1 series mobile robot, we employed the 
robot’s laser scanner to define the environment.  After finding the optimum path for 
parking, the robot parks, emulating an automobile.  We park between objects without 
hitting them or the surrounding environment.  To accomplish this, we broke the robot’s 
path into two semicircles that robot was constrained to follow.  These semicircles could 
be followed by an actual automobile.  Corrections were then performed as needed until 
the robot was correctly parked. 
 
This resulted in an algorithm that could be employed on an actual vehicle with the proper 
environment mapping equipment allowing for reduced urban congestion and savings in 
time and money.  Future work includes integrating the algorithm into an actual vehicle.  
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Another algorithm could further save the user’s time by automatically paying parking 
meters when needed through a wireless connection or, when driving is completely 
automated, to unpark and find a different parking area when a parking meter has expired.  
This will necessarily require notifying the user that the automobile has moved. 
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APPENDIX 
 
%Complete parking trajectory of robot for MATLAB 

 

L = 48.26; W = 33.02; Lp = 72.39; 

 

theta_i = 37*pi/180; 

R = L/tan(theta_i); 

R_prime = R + (W/2 + 10.5); 

theta_o = atan(L/(W+R)); 

Lp_prime = Lp + 10; 

d = sqrt(R_prime^2 - (Lp_prime/2)^2) - 10.5; 

i = ceil(Lp_prime/2); 

 

X = zeros(1,i); 

Y = zeros(1,i); 

 

X(1,1) = Lp_prime; 

Y(1,1) = R_prime  - d; 

 

for n=1:1:i-1 

    x = X(1,1) - n; 

    X(1,n+1) = x; 

    y = sqrt(R_prime^2 - (Lp_prime - x)^2); 

    Y(1,n+1) = y - d; 

end 

 

plot(X,Y); 

hold on 

 

%part 2 

j = ceil(Lp_prime/2 - 5); 

 

X2 = zeros(1,j); 

Y2 = zeros(1,j); 

 

X2(1,1) = X(1,i); 

Y2(1,1) = Y(1,i); 

 

 

for n=1:1:j-1 

    x = X2(1,1) - n; 

    X2(1,n+1) = x; 

    y = sqrt((R_prime - 10.5)^2 - (x + 18.685)^2); 

    Y2(1,n+1) = 64.05 - y; 

end 

 

plot(X2,Y2); 
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%complete "safety" trajectory for MATLAB 

 

L = 48.26; W = 33.02; Lp = 72.39; Wp = 41.02;%width of parking spot, 7 

cm wider than robot's width  

 

theta_i = 50*pi/180;%turning angle increased to 50 degrees 

R = L/tan(theta_i); 

R_prime = R + (W/2 + 10.5 - 6); %whole trajectory moved down by 6cm 

theta_o = atan(L/(W+R)); 

Lp_prime = Lp + 16;%parking spot error increased to 8cm instead of 5cm 

d = sqrt(R_prime^2 - (Lp_prime/2)^2) - 10.5 + 6; %whole trajectory 

moved down by 6cm 

i = ceil(Lp_prime/2 + 4); 

 

X = zeros(1,i); 

Y = zeros(1,i); 

 

X(1,1) = Lp_prime; 

Y(1,1) = R_prime - d; 

 

for n=1:1:i-1 

   x = X(1,1) - n; 

   X(1,n+1) = x; 

   y = sqrt(R_prime^2 - (Lp_prime - x)^2); 

   Y(1,n+1) = y - d; 

end 

plot(X,Y); 

hold on 

 

%part 2 

 

j = ceil(Lp_prime/2 - 8); 

X2 = zeros(1,j); 

Y2 = zeros(1,j); 

 

X2(1,1) = X(1,i); 

Y2(1,1) = Y(1,i); 

 

for n=1:1:j-1 

   x = X2(1,1) - n; 

   X2(1,n+1) = x; 

   y = sqrt((R_prime - 10.5 - 6)^2 - x^2); 

   Y2(1,n+1) = 64.05 - y - 43;  

end 

plot(X2,Y2); 

 
 
 


