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ABSTRACT  
 
The design of pedestrian navigation systems for use in 
GPS-denied scenarios has received significant attention 
from research community in recent years. Numerous 
target applications exist, including localization for groups 
of firefighters, first responders, or soldiers. In these 
applications, the safety and efficiency of the entire team 
relies on the availability of accurate position and 
orientation (pose) estimates of each team member.  

One approach is to equip each person with a body-
mounted Inertial Measurement Unit (IMU). As the person 
moves, the linear acceleration and rotational velocity 
measurements can be integrated to obtain a pose estimate. 
However, the integration of both sensor noise and 
unknown bias causes the pose estimates to drift quickly. 
To mitigate the inertial drift errors, an aiding sensor can 
be employed such as a camera or laser scanner, which 
provides exteroceptive information about the 
environment. The person´s pose can be estimated by 
fusing the integrated IMU signals with environmental 
cues, such as the locations of nearby landmarks, in order 
to improve pose-estimation accuracy. While these aiding 
sensors are typically considered to be essential for 
accurate, GPS-denied navigation, they often require 
additional infrastructure (e.g., radio beacons), which 
increases the complexity, cost, and power requirements of 
the personal navigation system.  
 
In contrast, we exploit the wealth of information available 
from human gait motion in order to improve localization 
accuracy. Specifically, we employ wavelet signatures 
computed from the raw IMU signals (tri-axial gyroscope 
and tri-axial accelerometer measurements) in order to 
classify the current gait of the person (e.g., walking, 
running, crawling) and utilize stochastic constraints on the 
person’s motion, available from trained motion models, in 
order to correct their pose estimates. We have tested our 
approach both in simulation and experimentally to 
validate its correctness and accuracy in real-time personal 
navigation scenarios.  
 
The key benefits of our approach are that it is 
computationally inexpensive, flexible amongst many 
users, and extensible to a wide variety of gaits. Moreover, 
we do not require any additional sensors, hence reducing 
the cost, weight, and power requirements of our system. 
 

I. INTRODUCTION  
 
Numerous pedestrian navigation applications have been 
proposed [1], including localization for a coordinating 
group of firefighters [2], first responders [3], or soldiers 
[4]. In these applications, the safety and efficiency of the 
entire team relies directly on the position and orientation 



estimates of each team member. A challenging scenario 
arises in GPS-denied environments when the team 
operates inside a building, in the urban canyon (i.e., next 
to tall buildings), underground, in foliage, or under the 
forest canopy.  
 
As an industry leader in navigation technologies, 
Honeywell has been researching and developing personal 
navigation equipment. For instance, a dead-reckoning 
system based on the fusion of IMU and compass 
information termed the DRM™ 4000, is currently 
commercially available. This system is low-cost and 
capable of GPS-denied navigation in the absence of large 
magnetic disturbances. Moreover, Honeywell has been 
developing advanced techniques for aiding personal 
navigation by estimating displacements using gait models. 
In the work of Soehren and Keyes [5], a human motion 
model (based on gyroscope and accelerometer 
measurements) is employed to infer the distance and 
direction of a motion type. This generates a displacement 
estimate that is blended with the result of IMU integration 
to estimate position. In addition, to study the effect of 
adding additional aiding sensors on the pose estimate 
accuracy, Honeywell developed a positioning system 
under the DARPA individual Precision Inertial 
Navigation System (iPINS) program that uses an IMU, 
GPS, barometer, and motion classification to estimate a 
person’s pose in both indoor and outdoor environments.  
 
In this paper, we continue our research for constraining 
inertial drift without relying on additional sensors. We 
present an approach that estimates the person’s position 
and orientation using a dictionary of motion models, and a 
gait classifier that only relies on the IMU data. 
Specifically, we first detect the person’s gait (e.g., 
walking, running, or crawling) using wavelet signatures 
computed from the IMU signals. Subsequently, a motion 
constraint is formulated based on a set of motion models 
which determine speed as a function of gait, frequency, 
and biometric information (e.g., leg length). Finally, we 
incorporate the motion constraint into the inertial 
navigation system to reduce pose estimate errors. The 
principal advantage of the proposed approach is that it 
works without requiring additional sensors, instead, it 
leverages domain information (i.e., how a person moves) 
and the already-available IMU measurements, in order to 
improve navigation accuracy. 
 
The remainder of this paper is organized as follows: 
Section II reviews the relevant literature on personal 
navigation systems. Subsequently, we present our 
personal navigation prototypes in Section III. The 
approach for wavelet-based gait classification and method 
for updating the pose estimate is in Section IV. We 
present experimental results to validate our method in 
Section V. Finally we provide the summary in Section VI. 
 

II. RELATED WORK 
 
Personal navigation systems have relied extensively on 
the use of portable GPS devices, which are widely 
available today. The main limitation of GPS-based 
approaches is that they rely on line-of-sight to the satellite 
network for accurate navigation. This means that many 
environments preclude there usage, including indoors and 
in the urban canyon (i.e., next to tall buildings). 
  
Other approaches use exteroceptive sensors such as 
cameras [6] and lidars [7, 8] in combination with an IMU 
for person navigation. The key idea is to measure the 
relative motion of the person with respect to the 
environment, in order to reduce IMU drift. This approach 
can also be accomplished using temporary beacons 
deployed in the environment [9], or mounted on other 
team members [3]. These methods have a myriad of 
limitations such as reliance on robustly detectable / 
uniquely identifiable environmental features, necessity to 
instrument the environment with radio-frequency 
identification (RF-ID) tags, or nearby collaborators who 
also have a good position estimate. 
 
In contrast to the above approaches are those which seek 
to estimate pose using only an IMU with no additional 
sensors or external references. These methods are 
interesting because they significantly simplify the 
hardware requirements, and mitigate the need for 
complicated system calibration (e.g., calibrating the 
camera-to-IMU transformation [10]). These IMU-only 
approaches exploit knowledge about the motion of a 
person in order to improve estimation accuracy.  
 
For instance, many authors have exploited so called 
“zero-velocity updates” (ZUPTs) to reset the IMU 
velocity errors during the stance phase of walking [7, 11]. 
Other approaches utilize inertial sensor data for motion 
classification, in addition to ZUPTs. For instance, Lau et 
al. [13] developed a small sensor unit, comprised of an 
accelerometer and a gyroscope, to detect shank and foot 
segment motion and orientation during different walking 
conditions. Qiu et al. [14] investigated a feature based 
method and a waveform based method with a low cost 
waist-mounted IMU. 
 
More advanced techniques also exploit IMU signal 
characteristics (e.g., peaks and valleys in the acceleration 
signal induced by walking) to differentiate between 
walking and running. Using this information, they can 
also enforce constraints on the gait motion [12]. The 
number of gaits that can be detected is limited to walking 
forward, walking backward, running, and stationary. The 
running model was developed on a treadmill and 
outdoors. In our proposed method, we can expand the 
number of gaits to 10 or more. 
 



In the current paper, we propose a new approach for 
classifying motion gaits that is flexible across a wide 
range of users. Instead of looking for specific features in 
the IMU signals, we employ the wavelet transformation in 
order to capture both frequency and time-domain 
information in a compact form. This method can be 
applied for a wide range of gaits, and requires virtually no 
manual tuning to adapt it to different gaits. Subsequently, 
we employ motion models, trained across a wide variety 
of subjects, to update pose based on the current gait. 

III. SYSTEM BACKGROUND 
 
Before presenting the details of our gait classification 
method, we provide a brief overview of the two personal 
navigation systems on which the proposed gait 
classification method has been tested. 
 
The first testbed is an Emergency Responder Locator 
System developed by Honeywell for the Department of 
Homeland Security (DHS), under the Geospatial Location 
Accountability and Navigation System for Emergency 
Responders (GLANSER) program. The GLANSER 
system provides the situational awareness in indoor and 
GPS-denied environments by displaying first-responder 
locations on a 2D or 3D display. Honeywell’s GLANSER 
system consists of portable geospatial locators that 
contain an Ultra-Wideband (UWB) ranging radio, a Micro 
Electronic Mechanical Systems (MEMS)-based IMU, a 
Doppler velocity radar, a barometric altimeter, and a 
processor module. Figure 1 shows the prototype 
geospatial locator unit (GLU), which is mounted on a 
backpack [15].  
 

 

Figure 1: GLANSER GLU prototype, which is a 
backpack-mounted personal navigation system 

The second testbed is the Honeywell ePINS – enhanced 
Personal Inertial Navigation System. ePINS facilitates 
GPS-denied navigation by fusing the measurements from 
a MEMS-grade IMU with advanced motion classification 
algorithms. Figure 2 depicts the ePINS system attached 
via a belt on the lower back of the user. 

 

Figure 2: Honeywell ePINS prototype 

In both personal navigation systems (ePINS and 
GLANSER), the HG1930 MEMS IMU (see Figure 3) is 
used to provide inertial measurements for strapdown 
navigation. It is an ideal sensor for personal navigation 
applications due to its small size (< 4 cu. in.), high 
performance (< 1º/hr bias), low power (< 3 watts), and 
low cost. We note that this IMU provides the only data 
used during the online portion of the proposed gait 
classification method. 

 

Figure 3: HG1930 Inertial Measurement Unit 

IV. PROPOSED METHOD  
 
We decompose the task of aiding an INS for personal 
navigation using only motion-model information into 
three subproblems. First, we describe how to classify gaits 
in a wavelet-domain feature space. This process is generic 
enough to allow new gaits to be added to the classification 
scheme easily, and robust enough to ensure that gaits are 
not misclassified. Second, we describe a step-length 
model training approach wherein we characterize the step 
length of each gait as a function of frequency and 
biometric information of the person (e.g., height). Lastly, 
we must form an EKF update using the step length 
calculated from the trained model to correct the 
navigation solution, which requires characterizing the 
model uncertainty.  
 
A. Gait Classification 
 
The task of determining which gait a person is executing 
is inherently a classification problem. Given a variety of 
gaits (e.g., walking, running, crawling) and data 
describing the current motion (i.e., accelerometer and 
gyroscope measurements), we must determine the 
person’s current gait. The challenge is that raw IMU data 



is multi-dimensional, noisy, and recorded in a time-
varying frame of reference which changes uniquely for 
each person. Thus, relying on “features” in the raw time-
domain signal is error-prone and few unique features exist 
(e.g., the foot-strike spike in the z-axis accelerometer that 
occurs during walking), which can be used to reliably 
disambiguate between gaits.  
 
Although we perform gait classification in the wavelet 
domain, we first need to segment the data into individual 
steps using the time-domain data. The segmentation 
process begins by analyzing the peaks and valleys of a 
particular gait in order to determine when a single step 
starts and stops (see Figure 4). We partition the signal 
using the maxima/minima at the start/end of each step.    
 

 

Figure 4.  An example of three cycles for a given gait. 
The blue dots represent local maxima. The red dot is the 
global peak within a sliding time window, which 
separates the second and third cycles. (one full step 
include two cycles) 

The results of the step-segmentation routine are displayed 
in Figure 5, where we use the y-axis acceleration channel. 
In this case, all the peaks are highlighted using a pink star 
‘*’, and the valleys are denoted using a pink box. 
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Figure 5: Segmentation of the IMU data using the y-axis 
accelerometer signal 

 
After segmenting the IMU data, we examine the 
regularity for different individuals executing a specific 
gait. Figure 6 displays the results for two different 

peoples’ walking style (in red and blue) across 
approximately 15 example steps. As is evident from the 
graph, walking has some characteristics which are 
common across people, e.g., the sharp peaks in the z-axis 
acceleration due to foot-ground impacts. However, there 
is also variability amongst people in terms of the 
magnitude and time of occurrence of certain time-domain 
features within the IMU signals. This suggests that 
attempting to classify gaits based on the time-domain 
IMU signals is a formidable task that may require 
significant hand tuning for each individual. To overcome 
these issues, we decided to examine the IMU data in a 
different feature space. In particular, we noted that both 
frequency and time-domain characteristics of the IMU 
signals play an important role in differentiating gaits. 
Hence, a natural approach is to examine the IMU signals 
in the wavelet domain.  

 
Figure 6: Sample steps for two subjects (red) and (blue).  
 
Specifically, we compute the wavelet transform of each 
channel over a sliding time window of length m, from tk-m 
up to tk-1. Subsequently, we build-up a wavelet descriptor 
for each gait by concatenating the channels that exhibit 
the most information in the wavelet domain. By 
computing different wavelet descriptors for each gait at 
different frequencies and phase shifts, we encapsulate a 
wide variety of information about each gait that is suitable 
for input to a classifier. 
  
For the online phase, we calculate the wavelet descriptor 
of the incoming IMU data and we use a k-nearest-
neighbor classifier to determine the gait. After the 
candidate class has been identified, we can further 
validate the result by examining the quality of the 
classification. We score each classification decision based 
on the strength of the match (i.e., α > tmatch) and the ratio 
of the best match to the next best match (i.e., α/β > tratio). 
 
For more discriminative classification results we also 
evaluated a one-class support vector machine (SVM) 
approach.  The goal of one-class SVM is to find a region 
in the input space where the data predominantly lies (or 
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the unknown probability density is ‘large’), as shown in 
Figure 7. This is known as the problem of single class 
learning, because all training samples are from one class. 
We employ a radial basis function (RBF) to map the input 
space to a high dimensional space, where we perform 
classification.  We construct each gait model using the 
training data belong to a particular gait. So each one-class 
RBF SVM captures the distribution of the training data 
for a particular gait.  
 
After training each gait classifier, we can use the entire 
bank of SVMs online, very efficiently. Specifically, as the 
person moves around (using any of the learned gaits), we 
compute the wavelet descriptor for the current motion 
over the past m IMU measurements. We then score the 
current gait descriptor using each of the gait classifiers in 
the bank to obtain a decision on which gait is currently 
being executed. By selecting how often the classification 
procedure is performed, and how many classification 
results to take into account before declaring a decision, 
we can adaptively tune the classifier performance online. 
 

 
 

 
Figure 7. Single class SVM using a hypersphere 
boundary, which is specified by the center point a, and the 
radius r. The black dots denote training points, while X 
denotes a query point. 
 
B. Step-Length Modeling 
 
Once we have determined a person’s gait, the step-length 
modeling task can be formulated as a regression over the 
frequency currently being executed and person’s 
biometric information. Given the wide variety of factors 
relating a gait to the actual motion, we determined it 
necessary to construct accurate step-length models for 
each gait. For example, for the walking motion class, each 
person may walk with a  different stride length or velocity 
profile, depending on their biometric characteristics (e.g., 
height, thigh length, and weight) as well as the frequency 
of walking (i.e., a person walking fast may tend to take 
longer strides than a person strolling casually).  
 
In particular, we studied a number of factors affecting the 
motion profile by monitoring the gaits of a wide variety of 
subjects at Honeywell Labs. Each subject executed 10 

different gaits at 3~5 frequencies for each gait, using a 
ground-truth system consisting of a laser range finder and 
ultra-wide band (UWB) radios to triangulate the person’s 
true position as they moved. All the IMU data was labeled 
using the truthing system to obtain a gait label, position, 
and velocity for each segment of IMU data. We evaluated 
the accuracy of several regression techniques, including 
both global regression (linear and quadratic models) and 
local regression (local linear and Gaussian kernel 
models). For each regression model, we determined step 
length as a function of frequency and biometric 
information. The frequency is calculated as the inverse of 
the average gait cycle time (i.e., time to complete one 
step). Figure 8 shows the four regression models for the 
right shuffle gait of test subject 1.  
 

 
Figure 8: Step length vs. frequency for the right shuffle 

gait of subject 1 
 
After adding the biometric information of the person, the 
regression model will be a function of two or more 
dimensions. The step length model can be trained online 
as well by adding the model parameters to the state of the 
extended Kalman filter (EKF), and estimating them over 
time.  
 
C. Motion-Model Aided Personal Navigation 
 
After training the motion classifier and building the step-
length model for each gait, we can examine the 
performance of our system online during the operational 
phase. Specifically, we compute the wavelet transform of 
the IMU data to determine the gait mode and frequency. 
Subsequently, we obtain the estimated step length from 
the motion model. The calculated step length is compared 
with the position difference computed from the strapdown 
navigation, and incorporated into the Honeywell personal 
navigation EKF as a measurement update. We compute 
the Jacobian of the measurement equation, H, and the 
noise covariance, R, based on an error characterization of 
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the gait model. In order to prevent misclassifications from 
affecting the filter estimates, we employ a probabilistic 
threshold to gate each measurement. We compute the 
measurement residual r, and the corresponding 
covariance of the residual S = HPHT + R, and we accept 
the measurement if rT S-1 r < tmahal.  
 
V. EXPERIMENTAL RESULTS 
 
In this section, we describe our experimental trials that 
validate the correctness and accuracy of the proposed 
solution. 
 
Experimental result 1: In the first set of experimental 
trials, we evaluated the discriminative capability of 
wavelet-based gait classification by evaluating five 
different gaits (walking, running, duck walking, military 
crawling, and knee crawling) across different frequencies 

and phase shifts. In particular, we computed the wavelet 
descriptor for each gait, and stored a bank of templates 
corresponding to different phase shifts and frequencies of 
the gait. Subsequently, using query data of a known gait, 
we performed nearest-neighbor classification to see which 
gait template most closely matched the query (see Figure 
9). Table 1 depicts the cumulative results obtained over 
all queries. We note that using wavelet descriptors 
allowed the correct gait to be identified 100% of the time. 
This suggests that wavelet descriptors are a powerful tool 
for disambiguating gaits. Determining the correct 
frequency proved less accurate, particularly for military 
crawl, where only 44% of the queries returned the correct 
solution. It should be noted however, that even in this 
case, 95% of the queries returned a frequency which was 
within 0.1 of the true. A similar level of accuracy was 
attained for phase where for the military crawl, the correct 
phase shift (i.e., 0 deg) was selected only 81% of the time. 
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Figure 9: Classification results from a query of running at a certain frequency and phase (depicted by the dark sphere). The 
height of each bar denotes the likelihood of the query data matching that gait, frequency, and phase. As is evident from this 
trial, the nearest-neighbor approach correctly classifies gait, phase, and frequency. 
 
 
 
 
 
 
 



Table 1: Results from the query data across different 
phases and frequencies. The true query gaits are depicted 
across the columns, each one was executed at 0 deg phase 
shift and frequency scale 1. The horizontal direction 
denotes the query data, while the vertical direction 
denotes the classification result. 
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Experimental result 2: We present the results obtained 
from training one-class RBF SVMs, which captures the 
distribution of the wavelet descriptors for each gait. 
Figure 10 shows the histogram of the score of the seven 
gait models using all the six channels. We perform 
classification by appropriately selecting a threshold for 
each axis. We can clearly see that the ‘not in class’ query 
(Figure 10, right) is well separated from the ‘in class’ 
query (Figure 10, left), thus threshold selection is straight 
forward. 
 
Experimental result 3: Table 2 presents the classification 
results using the GLANSER GLU on seven motion 
classes for one subject using the k-nearest-neighbor 

classifier. This classification result may improve the 
vertical-axis position estimates. For example, the person’s 
vertical motion profile can fall into one of three classes, 
i.e., no vertical change, upward motion, or downward 
motion. In this example, the ‘no vertical change’ class 
includes ‘walk forward’, ‘walk backward’, ‘run’, ‘crawl 
forward’, and ‘duck walk’. If the ‘upward motion’ class is 
detected, we know that the corresponding vertical change 
is about 7 inches, which is the vertical rise of a single step 
on the stair case. 

 
Figure 10: Histogram of the score for seven gait models 
using the ‘in class’ query (left) and ‘not in class’ query 
(right) for one-class RBF SVMs. Gaits are: G1: walking, 
G2: running, G3: duck walking, G4: military crawl, G5: 
knee crawl, G6: left shuffle, and G7: right shuffle. A 
score close to 0 denotes a close match, a score close to -1 
is not a close match. 
 
The barometric altimeter for estimating altitude indoors is 
sensitive to pressure changes induced by heating and 
ventilation systems. We can reduce this effect by 
constraining the person’s altitude when they are 
traversing a single floor of the building (i.e., when 
executing any of the ‘no vertical change’ gaits). If the 
classification results are either ‘walking upstairs’ or 
downstairs, we can form a vertical position measurement 
to improve the navigation estimate computed by the 
strapdown navigation system.  
 
Table 2: Classification accuracy using the GLANSER 
GLU prototype 

 Classification accuracy steps 
Walk forward 91.7% 72 

Walk backward 97.2% 36 
Run 100% 11 

Up stairs 100% 9 
Down stairs 77.8% 9 

Crawl forward 93.4% 61 
Duck walk 100% 32 
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VI. SUMMARY 
 
In conclusion, we have presented a new method for 
motion classification (gait classification) using wavelet 
descriptors of IMU data. The proposed motion 
classification method is robust to different frequencies 
and phases for a wide variety of motion types. For each 
classified motion type, we can estimate the step length 
based on the person’s gait frequency, as well as biometric 
information such as height or leg length. The step length 
is formulated as a velocity measurement that the extended 
Kalman filter employs to correct the inertial drift in the 
strapdown navigation solution. We examined the 
accuracy of both k-nearest-neighbor classification and 
support vector machine classification using radial basis 
functions. The results depicted that the RBF SVM 
provided a more descriptive mechanism for capturing the 
distribution of each gait class. In our future work, we are 
examining methods for more robust signal segmentation 
methods, which will help for reducing the template 
storage in the motion dictionary.  Also we are integrating 
the online step-length training capability for the personal 
navigation system. 
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