

Dept. of Computer Science & Engineering

Abstract

We present a Direct Least-Squares (DLS) method for computing all of the solutions of the perspective-*n*-point camera pose determination problem (PnP) in the general case ($n \ge 3$). We directly compute all minima of a nonlinear least-squares cost function, without relying on an initial guess or iterative techniques. We manipulate the cost function into polynomial form, and note that its optimality conditions comprise a system of three 3rd order polynomial equations. Subsequently, we utilize the Multiplication Matrix to compute all roots of the system directly, and hence, all local minima of the cost function.

Contributions

- Direct least-squares solution of PnP, for $n \ge 3$
- Complexity only linear in the number of points

Problem Description

• Perspective-*n*-point pose determination problem:

Given: observations of *n* points, ${}^{S}\overline{\mathbf{r}}_{1}, \ldots, {}^{S}\overline{\mathbf{r}}_{n}$, in one image, whose global-frame coordinates ${}^{G}\mathbf{r}_{1},\ldots,{}^{G}\mathbf{r}_{n}$ are known

Compute: six degrees-of-freedom transformation $\{{}_{G}^{S}\mathbf{C}, {}^{S}\mathbf{p}_{G}\}$ from the Global frame $\{G\}$ to the Camera (sensor) frame {S}

Assumptions: Known intrinsic calibration and correct data association

Fig. 1: Minimal case (n = 3) up to 4 possible solutions

Measurement Model

Spherical camera model

$$\mathbf{z}_{i} = {}^{S} \mathbf{\bar{r}}_{i} + \boldsymbol{\eta}_{i} \qquad i = 1, \dots$$
$${}^{S} \mathbf{r}_{i} = {}^{S}_{G} \mathbf{C}^{G} \mathbf{r}_{i} + {}^{S} \mathbf{p}_{G}$$

A Direct Least-Squares (DLS) Method for PnP

Joel A. Hesch and Stergios I. Roumeliotis[†]

Nonlinear Least-Squares Cost Function

 Optimal position and orientation (pose) minimizes the following constrained cost function

$$\{{}^{S}_{G}\mathbf{C}^{*}, {}^{S}\mathbf{p}_{G}^{*}\} = \arg\min J$$

subject to
$${}^{S}_{G}\mathbf{C}^{T}$$

$$G_G^S \mathbf{C} = \mathbf{I}_3, \quad \det \begin{pmatrix} S \\ G \end{pmatrix} = 1$$

 $\alpha_i = ||_G^S \mathbf{C}^G \mathbf{r}_i + {}^S \mathbf{p}_G||$
 $||\mathbf{z}_i - {}^S \overline{\mathbf{r}}_i||^2$ (1)

where
$$J = \sum_{i=1}^{n} ||\mathbf{z}_i - {}^S \bar{\mathbf{r}}_i||^2$$

= $\sum_{i=1}^{n} ||\mathbf{z}_i - \frac{1}{\alpha_i} \left({}^S_G \mathbf{C}^G \mathbf{r}_i + {}^S \mathbf{p}_G \right) ||^2$

Challenges: constraints, nonlinear, nonconvex, and multiple local minima!

DLS for Computing All Solutions

- . Transform measurement model
- Exploit the geometric constraint relationships:

 $\alpha_i^{S} \overline{\mathbf{r}}_i = {}_G^{S} \mathbf{C}^G \mathbf{r}_i + {}^S \mathbf{p}_G, \quad i = 1, \dots, n$ to express scale and translation as (see paper):

$$\alpha_{i} = f\left({}_{G}^{S}\mathbf{C}, {}^{S}\mathbf{p}_{G}, {}^{G}\mathbf{r}_{1}, \dots, {}^{G}\mathbf{r}_{n}, {}^{S}\overline{\mathbf{r}}_{1}, \dots, {}^{S}\overline{\mathbf{r}}_{n}\right)$$
$${}^{S}\mathbf{p}_{G} = g\left({}_{G}^{S}\mathbf{C}, {}^{G}\mathbf{r}_{1}, \dots, {}^{G}\mathbf{r}_{n}, {}^{S}\overline{\mathbf{r}}_{1}, \dots, {}^{S}\overline{\mathbf{r}}_{n}\right)$$

- Substitute into (1) to obtain a cost function whose only unknown is the rotation ${}^{S}_{G}\mathbf{C}$
- 2. Represent ${}^{S}_{G}\mathbf{C}$ using Cayley-Gibbs-Rodriguez (CGR) rotation parameters: s_1, s_2, s_3
- Convert cost function into a 4th order polynomial in 3. three unknowns (CGR parameters): $J(s_1, s_2, s_3)$ 4. Corresponding optimality conditions form a system of three 3rd order polynomial equations

$$\nabla_{s_j} J\left(s_1, s_2, s_3\right) = F_j = 0$$

Solve system, $F_j = 0$, j = 1, 2, 3, using Multiplication Matrix (Eigen-decomposition of 27 x 27 matrix)

Key Results:

- Obtains all minima directly, we select global optimum by evaluating original cost function at all solutions Forming $F_j = 0$, j = 1, 2, 3 is linear in the # of points LS formulation is generic, and independent of number of
- points and scene layout

 \ldots, n

0, j = 1, 2, 3

 Accuracy comparable with Maximum Likelihood Estimate • Applicable in general scenarios (of $n \ge 3$ points) with planar or non-planar scenes

- and presence of outliers

Acknowledgements

Ori. Error Norm (rad)	Pos. Error Norm (m)
2.87×10^{-3}	8.67×10^{-3}
2.12×10^{-3}	2.42×10^{-3}
2.49×10^{-2}	2.33×10^{-2}
1.24×10^{-2}	3.41×10^{-3}
4.26×10^{-3}	9.82×10^{-3}
3.86×10^{-4}	3.49×10^{-4}
5.41×10^{-3}	1.02×10^{-2}
4.28×10^{-3}	9.83×10^{-3}
4.29×10^{-4}	3.35×10^{-4}

On-going work to deal with unknown data association