Abstract

We present a Direct Least-Squares (DLS) method for computing all of the solutions of the perspective- n-point camera pose determination problem (PnP) in the general case ($n \geq 3$). We directly compute all minima of a nonlinear least-squares cost function, without relying on an initial guess or iterative techniques. We manipulate the cost function into polynomial form, and note that its optimality conditions comprise a system of three 3 rd order polynomial equations. Subsequently, we utilize the Multiplication Matrix to compute all roots of the system directly, and hence, all local minima of the cost function.

Contributions

- Direct least-squares solution of PnP, for $n \geq 3$
- Complexity only linear in the number of points

Problem Description

- Perspective-n-point pose determination problem:

Given: observations of n points, ${ }^{S} \overline{\mathbf{r}}_{1}, \ldots,{ }^{S} \overline{\mathbf{r}}_{n}$, in one image, whose global-frame coordinates ${ }^{G} \mathbf{r}_{1}, \ldots,{ }^{G} \mathbf{r}_{n}$ are known

Compute: six degrees-of-freedom transformation $\left\{{ }_{G}^{S} \mathbf{C},{ }^{S} \mathbf{p}_{G}\right\}$ from the Global frame $\{\mathrm{G}\}$ to the Camera (sensor) frame \{S\}
Assumptions: Known intrinsic calibration and correct data association

Fig. 1: Minimal case ($n=3$) up to 4 possible solutions

Measurement Model

- Spherical camera model

$$
\begin{aligned}
\mathbf{z}_{i} & ={ }^{S} \overline{\mathbf{r}}_{i}+\boldsymbol{\eta}_{i} \quad i=1, \ldots, n \\
{ }^{S} \mathbf{r}_{i} & ={ }_{G}^{S} \mathbf{C}{ }^{G} \mathbf{r}_{i}+{ }^{S} \mathbf{p}_{G}
\end{aligned}
$$

Nonlinear Least-Squares Cost Function

- Optimal position and orientation (pose) minimizes the following constrained cost function

$$
\begin{align*}
&\left\{{ }_{G}^{S} \mathbf{C}^{*},{ }^{S} \mathbf{p}_{G}^{*}\right\}= \arg \min J \\
& \text { subject to } \quad{ }_{G}^{S} \mathbf{C}_{G}^{T S} \mathbf{C}=\mathbf{I}_{3}, \quad \operatorname{det}\left({ }_{G}^{S} \mathbf{C}\right)=1 \\
& \alpha_{i}=\left\|{ }_{G}^{S} \mathbf{C}^{G} \mathbf{r}_{i}+{ }^{S} \mathbf{p}_{G}\right\| \\
& \text { where } \quad J= \sum_{i=1}^{n}\left\|\mathbf{z}_{i}-{ }^{S} \overline{\mathbf{r}}_{i}\right\|^{2} \tag{1}\\
&= \sum_{i=1}^{n}\left\|\mathbf{z}_{i}-\frac{1}{\alpha_{i}}\left({ }_{G}^{S} \mathbf{C}^{G} \mathbf{r}_{i}+{ }^{S} \mathbf{p}_{G}\right)\right\|^{2}
\end{align*}
$$

- Challenges: constraints, nonlinear, nonconvex, and multiple local minima!

DLS for Computing All Solutions

1. Transform measurement model

- Exploit the geometric constraint relationships:

$$
\alpha_{i}{ }^{S} \overline{\mathbf{r}}_{i}={ }_{G}^{S} \mathbf{C}^{G} \mathbf{r}_{i}+{ }^{S} \mathbf{p}_{G}, \quad i=1, \ldots, n
$$

to express scale and translation as (see paper):

$$
\begin{aligned}
\alpha_{i} & =f\left({ }_{G}^{S} \mathbf{C},{ }^{S} \mathbf{p}_{G},{ }^{G} \mathbf{r}_{1}, \ldots,{ }^{G} \mathbf{r}_{n},{ }^{S} \overline{\mathbf{r}}_{1}, \ldots,{ }^{S} \overline{\mathbf{r}}_{n}\right) \\
{ }^{S} \mathbf{p}_{G} & =g\left({ }_{G}^{S} \mathbf{C},{ }^{G} \mathbf{r}_{1}, \ldots,{ }^{G} \mathbf{r}_{n},{ }^{S} \overline{\mathbf{r}}_{1}, \ldots,{ }^{S} \overline{\mathbf{r}}_{n}\right)
\end{aligned}
$$

- Substitute into (1) to obtain a cost function whose only unknown is the rotation ${ }_{G} \mathrm{C}$

2. Represent ${ }_{G}^{S} \mathrm{C}$ using Cayley-Gibbs-Rodriguez (CGR) rotation parameters: s_{1}, s_{2}, s_{3}
3. Convert cost function into a $4^{\text {th }}$ order polynomial in three unknowns (CGR parameters): $J\left(s_{1}, s_{2}, s_{3}\right)$
4. Corresponding optimality conditions form a system of three $3^{\text {rd }}$ order polynomial equations

$$
\nabla_{s_{j}} J\left(s_{1}, s_{2}, s_{3}\right)=F_{j}=0, \quad j=1,2,3
$$

5. Solve system, $F_{j}=0, j=1,2,3$, using Multiplication Matrix (Eigen-decomposition of 27×27 matrix)

Key Results:

Obtains all minima directly, we select global optimum by evaluating original cost function at all solutions
Forming $F_{j}=0, j=1,2,3$ is linear in the \# of points

- LS formulation is generic, and independent of number of points and scene layout

Simulations and Experimental Results

- Accuracy vs. number of points and pixel noise (σ)

$$
\text { (average error computed over } 100 \text { Monte-Carlo trials) }
$$

- NPL: Ansar \& Daniilidis, "Linear pose estimation from points or lines" PAMI '03
- EPnP: Lepetit et al., "EPnP: An accurate $O(n)$ solution to the PnP problem" IJCV ' 08
- SDP: Schweighofer et al., "Globally optimal O(n) solution to the PnP problem for
general comera models", In Proc. of the Brittish Machine Vision Conf. '08
DLS: Proposed Direct Least-Squares approach
DLS+LM: Levenberg-Marquardt iterative minimization of original cost function, initialized with DLS (benchmark)
- Experimental results (PnP + virtual box reprojection)

Conclusions and Future Work

- Accuracy comparable with Maximum Likelihood Estimate
- Applicable in general scenarios (of $n \geq 3$ points) with planar or non-planar scenes
- On-going work to deal with unknown data association and presence of outliers

${ }^{\dagger}$ Acknowledgements

his work was supported by the University of Minnesota (DTC), the National Science Foundation (IIS-0643680, IIS-0811946, IIS-0835637), and AFOSR (FA9550-10-1-0567)

