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Abstract
We present a Direct Least-Squares (DLS) method for 
computing all of the solutions of the perspective-n-point 
camera pose determination problem (PnP) in the general 
case (n ≥ 3). We directly compute all minima of a 

nonlinear least-squares cost function, without relying on 
an initial guess or iterative techniques. We manipulate 
the cost function into polynomial form, and note that its 
optimality conditions comprise a system of three 3rd order 
polynomial equations. Subsequently, we utilize the 
Multiplication Matrix to compute all roots of the system 
directly, and hence, all local minima of the cost function.
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Contributions
• Direct least-squares solution of PnP, for n ≥ 3

• Complexity only linear in the number of points

Problem Description
• Perspective-n-point pose determination problem:

Given: observations of n points,                  , in one 
image, whose global-frame coordinates 
are known

Compute: six degrees-of-freedom transformation 
from the Global frame {G} to the Camera 

(sensor) frame {S}

Assumptions: Known intrinsic calibration and correct 
data association

Fig. 1: Minimal case (n = 3) up to 4 possible solutions

Measurement Model
• Spherical camera model

Nonlinear Least-Squares Cost Function
• Optimal position and orientation (pose) minimizes the 
following constrained cost function

• Challenges: constraints, nonlinear, nonconvex, and 
multiple local minima!

DLS for Computing All Solutions
1. Transform measurement model 

• Exploit the geometric constraint relationships:

to express scale and translation as (see paper):

• Substitute into (1) to obtain a cost function whose only 
unknown is the rotation 

2. Represent       using Cayley-Gibbs-Rodriguez (CGR) 
rotation parameters:

3. Convert cost function into a 4th order polynomial in 
three unknowns (CGR parameters):

4. Corresponding optimality conditions form a system of 
three 3rd order polynomial equations

5. Solve system,                             , using Multiplication
Matrix (Eigen-decomposition of 27 x 27 matrix)

Key Results:

– Obtains all minima directly, we select global optimum by 
evaluating original cost function at all solutions

– Forming                                is linear in the # of points

– LS formulation is generic, and independent of number of 
points and scene layout 

Simulations and Experimental Results
• Accuracy vs. number of points and pixel noise ( σ ) 
(average error computed over 100 Monte-Carlo trials)

– NPL: Ansar & Daniilidis, “Linear pose estimation from points or lines” PAMI ‘03

– EPnP: Lepetit et al., “EPnP: An accurate O(n) solution to the PnP problem” IJCV ‘08

– SDP: Schweighofer et al., “Globally optimal O(n) solution to the PnP problem for 

general comera models”, In Proc. of the Brittish Machine Vision Conf. ‘08

– DLS: Proposed Direct Least-Squares approach

– DLS+LM: Levenberg-Marquardt iterative minimization of original cost function, initialized 

with DLS (benchmark)

• Experimental results (PnP + virtual box reprojection)
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Conclusions and Future Work
• Accuracy comparable with Maximum Likelihood Estimate

• Applicable in general scenarios (of n ≥ 3 points) with 

planar or non-planar scenes

• On-going work to deal with unknown data association 
and presence of outliers


