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lower since we do not construct or maintain a map of the
environment. In this work, we also perform an observability
analysis to examine how many degrees of freedom of the
robots’ relative pose can be determined, under different
measurement scenarios.

III. PROBLEM FORMULATION AND SOLUTION

We begin by formulating the problem of CL for two
robots, each equipped with an IMU that measures its ro-
tational velocity and linear acceleration, and a camera that
observes point features in the environment, whose global
positions are unknown. Common visual features are tracked
by both vehicles across multiple frames in order to gain
information about the robot-to-robot transformation, and
increase their localization accuracy. In this work, we consider
a centralized estimation architecture for CL, where each
robot sends its measurements to a fusion center that processes
the data and estimates the poses of both robots. We assume
that the initial poses of the robots are approximately known,
e.g., using the method described in Section IV [see (17)],
and the data association problem is solved, e.g., using visual
feature descriptors [11] in conjunction with RANSAC.

A. State Vector

In what follows, the subscripts i and j (i; j = 1;2) corre-
spond to robots R1 or R2, while the subscript l denotes the
camera pose index. The state vector of robot Ri is2

xRi =
h

Ri
G qT bT

gi
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Ri
bT

ai
GpT

Ri

iT
(1)

where Ri
G q is the unit quaternion that describes the orientation

of the global frame {G} with respect to the frame {Ri} of
robot Ri, GpRi is the position and GvRi is the velocity of Ri
expressed in {G}, and bgi and bai are the gyroscope and
accelerometer biases, respectively. Without loss of generality,
we assume that {G} coincides with the initial frame of robot
R1. The error-state vector corresponding to (1) is
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where dqRi is the angle-error vector, defined by the error
quaternion dqRi

=
Ri
G q⊗Ri

G q̂−1 '
�

1
2 dqRi

T 1
�T

. Here, Ri
G q̂ and

Ri
G q are the estimated and true orientation, respectively, and
the symbol ⊗ denotes quaternion multiplication [25]. For
the other terms in the error state an additive error model is
employed, i.e., the error in the estimate x̂ of a quantity x is
ex = x− x̂.

When either robot records a new image, the state vector
is augmented with the corresponding camera pose (see
Section III-C). This process, termed stochastic cloning [21],
enables us to apply measurement constraints across multiple
images recorded at different time instances, while correctly
accounting for the correlations in the error-state (see Section

2For the clarity of presentation, we omit the time variable from time-
varying quantities defined hereafter. Time appears when describing the
continuous-time equations of motion and the discrete-time measurement
equations.

III-D). Robot Ri’s l-th camera pose and corresponding error
vector are

xCil =
h
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; exCil =

h
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(3)

where Cil
G q and GpCil denote its attitude and position, respec-

tively, and the error quantities are defined as above.
The joint state vector comprises the current states of both

robots and a history of their past camera poses
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where xC is the vector containing the N+M previous camera
poses of robots R1 and R2.

B. Propagation

We now proceed with an overview of the CL-MSC-KF
algorithm. We first present the continuous-time kinematic
model of the robots’ motion. By linearizing it, we obtain
the model describing the time evolution of the error-state.
Finally, we discretize these models to obtain the equations for
propagating the state and its associated covariance estimates
using the IMU measurements.

Specifically, the system model describing the time evolu-
tion of the robot state (1) is given by

Ri
G q̇(t) =

1
2

W
�
wRi(t)

�Ri
G q(t); ḃgi(t) = nwgi(t); ḃai(t) = nwai ;

Gv̇Ri(t) =
GaRi(t);

Gṗi(t) = GvRi(t) (5)

where GaRi is the acceleration of robot Ri, wRi =
[wxRi

wyRi
wzRi

]T is its rotational velocity expressed in the
local frame of robot Ri, nwgi and nwai are the zero-mean white
Gaussian random walk processes driving the IMU biases, and
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The measured rotational velocity and linear acceleration are
modeled as wmRi

= wRi +bgi +ngi and amRi
= C(

Ri
G q)(GaRi −

Gg) + bai + nai , respectively. Here, C(
Ri
G q) is the rotation

matrix corresponding to the quaternion Ri
G q, ngi and nai are

zero-mean white Gaussian noise processes, and Gg is the
gravitational acceleration.

The state-estimate propagation model is obtained by lin-
earizing (5) around the current estimates and applying the
expectation operator, i.e.,

Ri
G

˙̂q(t) =
1
2

W
�
ŵRi(t)

�Ri
G q̂(t); ˙̂bgi(t) = 03×1; ˙̂bai(t) = 03×1;

G ˙̂vRi(t) = C
�Ri

G q̂(t)
�T âRi(t)+

Gg; G ˙̂pRi(t) =
Gv̂Ri(t) (6)

where âRi = amRi
− b̂ai and ŵRi = wmRi

− b̂gi .
The linearized continuous-time model for the

error-state (2) is ėxRi = FRi
exRi + GRinRi , where

nRi =
�
nT

gi
nT

wgi
nT

ai
nT

wai

�T
is the system noise

whose covariance matrix QRi depends on the IMU
noise characteristics of robot Ri and is computed off-line
[25]. The Jacobian matrices FRi and GRi are
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Fig. 3: Robot R1 pose estimate errors, averaged over 100 Monte Carlo simulations. (Left): RMSE for the position estimate
of R1. (Right): RMSE for the orientation estimate of R1.

Fig. 4: Accuracy of the relative transformation averaged over 100 Monte Carlo trials. (Left): RMSE for the relative position
estimate. (Right): RMSE for the relative orientation estimate. Note that the CL-MSC-KF errors remain bounded, while the
MSC-KF errors continuously increase.
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Fig. 5: Robot R1 pose errors for the worst axis. (Left): R1 localizes independently. The RMSE, along the trajectory, for the
position is 129:7 m and for the orientation is 0:5 deg. (Right): R1 performs CL-MSC-KF with R2, when R2 has access to
GPS (sGPS = 1m). The RMSE in this case is 0:3 m for position and 0:05 deg for orientation.

lower for the CL-MSC-KF algorithm. At the end of the
trajectory, the CL-MSC-KF estimates are 58% more accurate
in orientation and 60% more accurate in position, compared
to the MSC-KF. In the second simulation, we evaluated
the accuracy of the estimated relative transformation (p;C)
between the robots, in order to validate the analysis pre-
sented in Section IV. The results in Fig. 4 indicate that
in the CL-MSC-KF framework the errors in the relative
transformation remain bounded, whereas in the MSC-KF
the errors continually increase. This is because in the MSC-
KF framework the commonly observed features are treated
independently while in the CL-MSC-KF this information
is exploited by appropriately processing such measurements
as the observations of the common scene. Therefore, even
though the global-pose estimates drift, the CL-MSC-KF is
able to maintain accurate relative-pose estimates over the
whole trajectory. This is clearly a desirable property for CL,
since if the group of the robots can maintain an accurate
estimate of their relative transformation, then when any one
of them measures its global position (e.g., using GPS), all
the robots will benefit.

We illustrate this case in the next simulation in which
the robots perform CL-MSC-KF, while R2 has access to
periodic GPS measurements with uncertainty sGPS = 1 m.
Figure 5 shows the performance improvement for the non-

GPS enabled robot R1 compared to how it performed on the
same trajectory when localizing independently. Although R1
is GPS denied, its pose accuracy significantly improves as
if it had GPS since it collaborates with R2 by sharing and
processing common visual observations.

Finally, we evaluated the dependence of the accuracy of
the pose estimates in the CL-MSC-KF framework on the
number of features observed by both robots. For any number
of features greater or equal to two the filter performance
was not affected significantly. On the other hand, in the
case of a single common feature observed over the whole
trajectory, the accuracy of the pose estimates of the CL-
MSC-KF degraded to the accuracy levels obtained when the
vehicles perform MSC-KF independently (see Fig. 6). These
results corroborate the analysis in Section IV, in that not
all six d.o.f. of relative transformation are observable when
only one common feature is viewed by both vehicles. In this
case, the relative pose of the robots is unobservable, which
prevents the filter from reducing the errors in the estimates
of the full six d.o.f. relative transformation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the problem of cooperative
localization (CL) for two robots using vision-aided iner-
tial navigation with overlapping camera observations of a
previously unknown scene. Specifically, we presented an
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