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Abstract—In this paper, we present the design and analysis
of a portable position and orientation (pose) estimation al for
the visually impaired. Our prototype navigation aid consigs of
a foot-mounted pedometer and a white cane-mounted sensing
package, which is comprised of a3-axis gyroscope and a 2D
laser scanner. We introduce a two-layered estimator that tacks
the 3D orientation of the white cane in the first layer, and the
2D position of the person holding the cane in the second layer
Our algorithm employs a known building map to update the
person’s position, and exploits perpendicularity in the bulding
layout as a 3D structural compass. We analytically study the
observability properties of the linearized dynamical sysem, and B
we provide sufficient observability conditions. We evaluat the
real-world performance of our localization aid, and demonsrate
its reliability for accurate, real-time human localization.

Index Terms—Handicapped aids, pose estimation, sensor fu-
sion, laser scanner, gyroscopes.

I. INTRODUCTION

OBILITY is an essential capability for any perso
who leads an independent life-style. It requires su
cessful execution of several tasks including path planni
navigation, and obstacle avoidance; all of which necdssit
accurate assessment of the surrounding environment. FO&=
visually-impaired person such tasks are exceedingly diffic
to accomplish, and there are high risks associated witbr&il Fig. 1. This figure depicts the typical usage of our locairataid, which
in any of these. For this reason, the visually impaired z€ili estimates the pose of a person walking inside a building.sEnsing package
portable navigation aids in their day-to-day activitiesomaer 'S mounted near the handle of the white cane, and a portioheoPD laser
. . . can planef0 out of the240 degrees field of view) is illustrated, along with
to increase their safety and independence. The standatd WiNe line of intersection between the scan plane and the floor.
cane is one of the most commonly used navigation tools. It
is light-weight, inexpensive, and provides tactile cuesub

potential obstacles, both indoors and outdoors. Unfofeina  ynfortunately, portable indoor navigation aids have natrbe
white canes cannot provide any information for wayfindingje,ejoped with the same success as their outdoor courterpar
such as distance to destination, or current heading directi o primary barrier is the lack of robust algorithms for

Assistance dogs are also commonly employed {0 inCregggermining a person’s position and orientation (posejans.
safety when navigating. They can detect and avoid potentigl inqoor localization aid must rely solely on local featsire

hazards, and help someone find their way from one locationdg the puilding structure in order to infer pose, since @oab
another. However, assistance dogs have costly trainingr®q |te reference system, such as GPS, is not available indoors

ments, and are not typically available to everyone. With thg,is haper presents a novel indoor localization device and
advent of hand-held electronic devices, GPS-based néigaty\qrithms for determining a person’s pose inside a bugdin
aids have also become commercially available (SenderofGrapjiih the use of this localization aid, guidance and navigati
2009; Humanware 2009). These are relatively inexpensite ag stems can be implemented which will greatly increase the

lightweight, but they can only be utilized outdoors in areagyter, and overall mobility of the target demographic.
where the satellite constellation is visible. -
When designing a portable sensor package for human local-
This work was supported by the University of Minnesota (DT@hd ization suitable sensor placement must be carefully censal
Joel Hesch was supported by the NIH Neuro-physical-contiput Sciences . . . .
(NPCS) Graduate Training Fellowship. A preliminary versiof this paper reqw_re the l_Jser to wear an electronic vest or belt fitted with
was presented at the 2007 IEEE International Conference aiotRs and sensing devises (Shoval et al. 1998; Ran et al. 2004). Adthou
Automation (Hesch and Roumeliotis 2007). , mounting a sensor directly on the body simplifies the interpr
The authors are with the Department of Computer Science and.. . .
Engineering, University of Minnesota, Minneapolis, MN 554 UsA tation of the sensor data (i.e., the transformation fromybod

(email: {j oel |st er gi os}@s. um. edu). to sensor is constant and known), it introduces complioatio
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Fig. 2. Algorithm block diagram: The first layer consists bé 8D attitude EKF which utilizes the instantaneous rotatiorelbcity of the canew, and line
features detected by the laser scanfd, in order to estimate the quaterniofgs, which expresses the orientation of the global frag@}, with respect

to the sensing fram¢S'}. The orientation is passed through a low-pass filter to nbtaj which is an estimate of the person’s heading direction. Séwnd
layer consists of theD position EKF which utilizes the person’s heading directgnd velocity,v, along with corner features extracted from the laser scan
data,“py, in order to estimate the person’s position inside the mgid® p.

when considering the variations in body types between useralization, we propose a novel two-layeredD estimator
Significant sensor calibration and harness adjustment reay(bee Fig. 2). In the first layer, rotational velocity measure
required in order to use such a system. Additionally, a bodgents from the3-axis gyroscope are combined with relative
mounted sensor package will likely interfere with commoarientation information inferred from the laser-scannatad
tasks such as sitting in a chair, and may prevent certaiciesti to estimate the3D attitude of the cane. The second layer
of clothing from being comfortably worn (e.g., a jacket)incorporates corner features extracted from the laser-sca
In contrast to the body-mounted paradigm, we proposedata, linear velocity measurements from the pedometeraand
portable sensing package mounted on a white cane, whicHiligred version of the cane’s yaw to estimate #i2 position
hand carried and does not interfere with the person’s nornudl the person with respect to a known building map. The
activities (see Fig. 1). In addition, incorporating the eanmap is comprised of the 2D coordinates of corners in the
as part of the navigation aid is of critical importance sincenvironment (i.e., wall intersections at hallway juncsprand
it allows the visually impaired user to physically touch thean be constructed either from the building blue prints or by
environment with a tool that they already know and trust mobile robot who has previously explored the area. Our
(Giudice and Legge 2008). estimator can accommodate both perfectly known maps and
Considering our proposed sensor placement and the requirexps with uncertainty in the corner locations. We also agsum
ment that the system must be portable, one can apprecidat a portion of the building’s structural planes (e.ge, fioor,
the stark difference between indoor human localization amdhll, and ceiling planes) lie perpendicular to each othez. W
mobile (wheeled) robot localization. When constructing aleverage the perpendicular portions of the building as a 3D
estimator for the pose of a mobile robot, measurements sifuctural compass to refine the attitude estimate of the.can
its linear and rotational velocities are often availablenir ~ The remainder of the paper is organized as follows: Sec-
its wheel encoders, its motion is typically assumed to h®n Il reviews the relevant literature on obstacle avom&an
planar, and its extrinsic sensors (e.g., laser scannearsonavigation, and localization systems for the visually i@
or camera) are rigidly connected to its chassis (Thrun et @ur method for estimating thtD attitude of the white cane is
2005). In our scenario the sensors measuring the persadiscussed in Section IlI-A. Section I1I-B details the lowsgs
motion move in 3D and are not rigidly connected to eadfiter which extracts the heading of the person from thetattt
other, which makes the task of combining their informatiosstimate of the cane. THD position filter for estimating the
significantly more challenging. Specifically, we utilize & 2 person’s location is presented in Section I1I-C. A desaipbf
laser scanner and&axis gyroscope mounted near the whitethe hardware setup is given in Section IV-A and experimental
cane handle to provide attitude information about the camesults are provided in Section IV-B. Lastly, the conclasio
and a lightweight, foot-mounted pedometer to measure thad future work are discussed in Section V.
person’s walking speed (Hesch and Roumeliotis 2007). Iigleal
the information from these sources should be fused in a
single pose estimator. However, all three sensors moadin
and the coordinate transformation from the pedometer to theRecent work has focused on developing hazard detection
laser/gyro is unknown and time varying. These factors rendads for the visually impaired (Whitney 1998). These employ
our problem significantly more challenging than planar tobsensors for obstacle avoidance such as laser pointers @vigan
localization, which necessitates the design of a new eitma Manduchi 2005), and sonars on a wheelchair (Bell et al. 1,994)
framework. on a robot connected at the tip of a white cane (Ulrich and
In order to address the challenges of indoor human IBorenstein 2001; Shim and Yoon 2002), or as part of a travel

II. RELATED WORK
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aid (Shoval et al. 1998; Ran et al. 2004). Cameras have atsferences. In (Yun et al. 2007), a human pose tracker is
been suggested for object description in terms of size alwd copresented which uses accelerometers and a magnetometer.
(Hub et al. 2004; Wong et al. 2003), for obstacle detection Double integration of accelerometer measurements to robtai
conjunction with tactile feedback (Zelek et al. 2003), and f position estimates results in errors which are quadratitién
image-to-sound auditory representations (Meijer 1992)il§V distance traveled. After employing gait detection and tdrif
these devices augment the perceptual abilities of a visuadlrror correction methods (Cavallo et al. 2005; Sagawa et al.
impaired person and reduce the probability of an accide?®00), the authors present results which show only linear
due to collision with an undetected obstacle, they cannot becumulation of error. Unfortunately, using a magnetome-
explicitly used as wayfinding aids without the developmeént @er indoors to measure orientation is highly susceptible to
appropriate algorithms for determining the person’s poik winterference from metal objects (e.g., cabinets, doors| an
respect to the building frame of reference. structural components) and electrical wiring. Howeveg th
Mobile robot pose estimation has received significant anain limitation is that dead-reckoning systems continlyous
tention starting with the introduction of the Simultaneouaccumulate error (even if the rate of increase is low), aigl th
Localization and Mapping (SLAM) problem (Moutarlier andorevents them from being used over extended periods of time.
Chatila 1989; Smith et al. 1990; Leonard and Durrant-Whyte The main contribution of this paper is the design and
1991; Thrun et al. 2005). Most SLAM algorithms are baseahalysis of a2.5D pose estimator, for indoor human local-
on the Extended Kalman Filter (EKF) (Williams et al. 2002jzation. The implemented device comprises a light-weight
or Monte Carlo Localization (MCL) (Dellaert et al. 1999;sensing package mounted on a white cane and a foot-mounted
Montemerlo et al. 2002). These methods typically rely opedometer. What distinguishes our localization aid from th
key assumptions that: (i) the robot is equipped with wheptevious approaches is: (i) our system is light-weightfaiae,
encoders to measure its linear and rotational velocitis, (@and cane-based, allowing the person to maintain physical
the robot’s trajectory is planar, and (iii) the robot's serss contact with the environment, (ii) our aid is unobtrusivedan
are rigidly connected to its chassis. Since these assungptidoes not require the user to wear a vest or harness (iii) we do
are violated for human pose estimation, there are only fawat require the sensors to be rigidly attached to each other o
attempts to apply this knowledge to assist the visually ingoh to strictly move in a single plane, and (iv) we do not rely on
in their everyday navigation tasks. Instead most releviotte  building instrumentation (e.g., RFID tags or digital siphs
have focused on GPS-based outdoor navigation for humalagalize.
which cannot be used inside a building (Makino et al. 1996;
Balachandran et al. 2003; Ceranka and Niedzwiecki 2003; Ran I1l. PROBLEM FORMULATION

et al. 2004). The estimation algorithm described in this work consists

An approach to indoor wayfinding for the visually impaireq)f two layers. In the first layer, thaD attitude of the white

is presented in (Kulyukin et al. 2004a,b). In this case, ne is estimated using rotational velocity measuremeoits f

autonomous robot is attached at the end of a leash ag, g o gyroscope and orientation updates from a 2D laser

substitute for a guide_ dog, and Iocalizg_s u_sing inform"ﬂiQoQ:anner, which exploits the perpendicular building plaags
from a network of Radio Frequency ldentification (RFID) 893, 3p structural compass. The heading direction of the person

One of the main limitations of this approach is that mobilityS computed by passing the cane's yaw estimate through a
is restricted to places that a mobile robot can reach. Tmrulow-pass fiter. In the second layer, t® position of the

out areas where stairs or steps are part of the spatial lay rson is estimated using the person’s heading directammn fr

and tight spaces such as inside an office or a crowded ro hiA low-pass filter and the person’s walking speed which is

Af(fj dlt;(_)tnally, tthsl_\{veéght and volltjmeFoftLhe rObOt’t:_egﬁgI’elmeasured by a foot-mounted pedometer. The person’s positio
aftect Its portability by a cornmuter. Furthermore, this is updated using laser-scanner observations of cornerrésat

requires instrumentation of buildings with RFIDs which i?n the environment (i.e., wall intersections at hallway gun

costly and time consuming; this is_ also the case for simil an), which are matched to known corners in a building map
ultrasound (Ran et al. 2004) and infrared (IR) (Ertan et 800 Fig 2y It is important to note, that while data from the

1998) based systems. ) ) laser scanner is utilized in both layers of the filter, we db no
Another tag-based system is presented by Tjan et al. (200 1se information. Instead, we avoid statistical cori@haby

n V\./h'Ch visual markers are useq to determine the perso R cessing the even-indexed points in the first layer and the
position. The core of the system is a handheld camera ter eo%-indexed points in the second layer. This issue is déwiis
the *maygic flashlight,” which processes image data seagchi more detail in Appendix A. We now turn our attention to

for _d|_g|tal SIgns In the enwronme_nt. These signs €NCOGKe 3D attitude filter, and analytically study the obseriigbi
a digital signature (a barcode deviant) on a retro-reflecti roperties of the linearized dynamical system. Subsetuent

surface, and must be placed in the environment during a se ® introduce the low-pass filter, and the 2D position estimat
procedure. After constructing a database of digital-sagal for the person '

tions and linking this database to a building-layout schigma
information can be sent to the user such as directions or a . ] o
description of their surroundings. A. Layer 1: White-Cane Attitude Estimation

Several dead-reckoning methods have also been presente@ur goal is to estimate th8D attitude of sensing frame
which seek to estimate the person’s pose without exterrdlreference{S} attached to the-axis gyroscope, which is
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rotating with respect to the global frame of referen¢éi} a) Continuous-time system modé&lhe time evolution of
fixed at the origin of the building map. This task requirethe attitude quaternion is described by the following fosder
us to first select an appropriate parameterization of3be differential equation:

orientation. Arguably the most popular method for speoiyi . 1

an orientation in3D is by means of roll, pitch, and yaw q(t) = iﬂ(w)t?(t) (4)
(rpy) angles. While thepy representation is elegant for its ) . ) _

intuitive interpretation and ease of visualization, it feu$ wherew is the instantaneous rotational velocity and

from singularities which, if not dealt with properly, might 0 —w3 ws
cause the estimate to become unstable. A more robust attitug) (w) = {_ [wx] ""] , lwx] = | ws 0 —w

representation is the quaternion of rotation —w 0 —wy Wy 0

- s- . o\17T The gyroscopes measure the rotational velocity of the cane,
= = |vsin (3 5 (5 1 . :
1 “ [V i (2) o8 (2)} @ w.m, expressed with respect {&'}, corrupted by sensor bias

which expresses the orientation f&} with respect to{S}. P @s well as measurement noisg, i.e.,

The vgctorv is t.he unit vectpr along the _axis of rptatio_n, W =w+b+n, (5)
and@ is the rotation angfe This representation of attitude is

ideal because it is compact and singularity-free. For tlariwhere the turn-rate noisa, is distributed as a zero-mean
the notation employed in this paper results in “natural ordewhite Gaussian process of strengttls. The sensor biab is
quaternion multiplication. As such, the symbeal denotes modeled as a random walk with

multiplication fulfilling “1¢., = *'¢., ® *2q.,, which is b — ©6)
the attitude rotation between successive frames (Breigsr = M
1999). wheren,, is distributed as a zero-mean white Gaussian noise

Attitude estimation is accomplished through the use @iocess of strength? I5. Note thato, and o, are computed
an Extended Kalman Filter (EKF) which fuses measureff-line using a standard gyroscope calibration procedure
ments from proprioceptive and exteroceptive sensing @svic(IEEE Std. 647-2006 2006). Linearizing (4) and using (3), (5
Specifically, rotational velocity measurements fron3-axis and (6) yields the following error-state propagation egumt

gyroscope are integrated to track the attitude, and stidiiggn . )
segments, corresponding to the intersection of the las@ar sc 5? _ —lox] —Is| |00 + —I3 03| |n,

b 03 03| |b 03 I3 |ny,
update the computed estimate. $=F.%x+G.n @)

plane and perpendicular planes in the building, are udlie
1) Attitude Propagation:The state vectox consists of the .
guaterniong and the gyroscope biab. The error statex wherew = w,, —b.

comprises the attitude angle-error vect@rand the gyroscope b) Discrete-time implementatiorDuring each propaga-
bias errorb = b — b, i.e., tion step of duratiordt, the bias estimate is constant [see (6)]

q _ [s0 by = b (8)

=i <= [5] @ e s o
and the quaternion estimate is propagated by integrating (4
Note that while the state vectaris 7 x 1, the error state is Wik o (Hwk‘k\\(;
. oo . . ~ - sin 3 t R

6 x 1. Many EKF formulations maintain equal sized state and Qri1)s = kel o ® G 9)
error-state vectors, however, the quaternion of rotatoodd- cos (W&)

fined to have unit length; which would cause the correspandin
covariance matrix to lose rank. To account for this, we z#ili where || ;|| = /a,;flka,klk and Wy, = Wi, — Bklk- The
the attitude angle-el’ror vecton in the error state deﬁned error-state covariance matrix is propagated as

from the following relation: .
. Pijijp = PuPrn®y + Qu, (10)
F=ad !~ [L50T . . . -
dqg=q@q ' =[300" 1] . () where the discrete-time state transition matrix is
. _ . thy1
The error quaternionig denotes a small rotational error /
. - . D = P(tpr1,t,) = €X F d
between the trueg, and the estimatedy, attitude of the F (1 1) p( e(m)dr

cane (Trawny and Roumeliotis 2005).

ty

and the discrete-time noise covariance matrix

tr41
IThroughout this paperXy denotes the expression of a vectprwith — P(t NG (T et T (¢t ) dr
respect to frame{ X}, ¥ Cy is the rotation matrix rotating vectors from Qa, (te41, T)Ge(T)QeGe (7) (tht1,7) dr.

t
frame {W} to frame {X}, while * g is the corresponding quaternion of *

rotation, and® pyy is the position of the origin of framélV }, expressed with UfI3 03 .

respect to framg X }. Additionally, I,, and0,, denote then x m identity, where Q. = 0 21| Both Qg, and ®;, are in-

and zero matrices, respectively. Finally, the symbol ™ denotes estimates . 3 O3 . . .

while “ ™" refers to error quantities, and we indicate measured diemtvith tegrated in closed form and their detailed expressions are

the subscript ", available in (Trawny and Roumeliotis 2005).
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to the building’s prominent structural planes (i.e., thellsya
ceiling, and floor that lie perpendicular to each other). We
categorize each structural plane according to which gaici
axis it is orthogonal, such that the three plane typeslhiie
i=1,...,3

er=[1 0 0" LT, e=[0 1 0"

es=1[0 0 1" LT

1 Iy

To simplify the discussion, we focus on a single measurement

of a plane,n; of type Il;, whose normal vector ig;. The

e unit-vector“£ denotes the direction of the line of intersection
34 between the laser-scan plane amnd expressed with respect

/ to {G} (see Fig. 3). Since; £ lies inm; ande; is orthogonal

{G} a2 to it, their inner product should be zero, i.e.,
e
! eTCe =0, ic{1,2,3). (11)

Fig. 3. “¢is the unit-vector direction of the line of intersection \ween At ; i ;
the laser-scan plane and, a structural plane of the building. Plang is of The measurement constraint is derived by rewriting (11r)gJSI

type IT; and is perpendicular to the unit-vecter which is one of the three the transformationt ¢ = c*(q) 5¢, ie.,
which span the3D space of the global framéG}.
z=eCT(q)°L=0 (12)

where the rotational matri’? () rotates vectors expressed

. . . with respect to{S} into {G}. Since“¢ is the unit-vector
2) Attitude Update:The attitude propagation step aIIOWSdirection of a line in thex-y plane of the sensor frame, it

us to track the time evolution of the orientation, howeve(rjfjm be expressed &€ = [sin () — cos (¢) O]T whereg

due to the integration of gyroscope noise and bias, the St%%he angle from the sensorisaxis to the perpendicular to
estimate continuously accumulates error. For this reagon . -
rt]ré? line direction.

is necessary to update the attitude estimate with exter N . . :
. . . . pplying the expectation operator on the first-order Taylor
information, which comes from the 2D laser scanner. Durm&afries approximation of (12), we obtain the expected measur
typical white cane usage, a walking person sweeps the tier ppre ' P

) : ! ent equation
the cane in an arc on the floor in front of them in order to
detect obstacles. This swinging motion causes the 2D laser- 2=e/CT(q) % (13)
scan plane to intersect with different structural eleméntbe s .
building, such as the floor, walls and ceiling (see Fig. 3). IWN€re”fm = [51-11 (ém) —cos(dm) 0] denotes the mea-
almost all buildings, at least some portion of the strudturdUréd line direction and,, = ¢ — ¢ is the measured angle
elements are planar and lie perpendicular to each other. ¥gth® perpendicular to the line direction. The angle ergor,
exploit this perpendicularity as a 3D structural compass gFcounts for measurement noise as well as line-fitting inac-
update the attitude estimate, however, we do not require gfracies, and '23 modeled as zero-mean white Gaussian noise
walls to be planar, or even all planes to be perpendicul4fith variances;. Employing (12) and (13), the measurement

As we will show, each laser-scan measurement must first $&0r IS:

matched to one of the principal map planes before it is etliz - T AT (2 | s 60
to update the orientation, hence, measurements corresgond s = [_ei ¢ (q) [*€mx] 0“3} {B]
to non-perpendicular planes, or to non-planar objects @ th +elcT ((j) les x |5¢ &
environment are simply discarded. ! 2 "
= h'x+~¢ (14)

The intersection between the laser-scan plane, and stalictu
planes in the building appear as straight-line segmenthén iwhereh” and~ are the measurement Jacobians with respect
laser-scan data. We employ weighted line fitting (Pfisted.et @& x and ¢, respectively. We also compute the measurement
2003) on the even-indexed data points to estinjate) which  residual ag" = z — 2 = —e’ CT ((j) 5l
are the polar parameters of the line. This line-fitting algo- Prior to applying an attitude update, we first match the mea-
rithm robustly detects lines in the raw laser-scan datalevhisured line direction to one of the principal plane direcsiam
rejecting points which correspond to intersections wittm-nothe building. To do so, we compute the Mahalanobis distance
planar obstacles in the environment (refer to Appendix A fd@or the measurement matching each building direction, i.e.

a complete discussion). The direction of each measured line 5

provides information about the relative orientation bedwe di = o i 55, 1=1,...,3. (15)
frames{S} and{G}, and we exploit this information to update hPyi1sh + o3y

the attitude estimate. If the minimum distance is less than a probabilistic thrésho

Inside the building,{G} is fixed at the origin of the then the measurement is matched to the corresponding plane
building map and its principal axde;, e, e3} are orthogonal and we proceed with the attitude update; otherwise we discar
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the line measurement. Hence, the filter is robust to errasigou
detected lines in the laser data.

In order to update the attitude estimate, we first comput
the Kalman gain:

1

k =
hTPyyph+ 032

Pyiqh (16)

The computed state correction is

[5000"} ~ kr, (17)

bcorr

wheredéb..,,.. is the correction to be applied to the orientation
estimate andb.,.. is the correction to be applied to the
bias estimate. From@.,,.- the error quaternion estimate is
computed as

Fig. 4. An illustration of the observability property beirfigifilled. In this

N 1 lggcorr instance, planes; andw, are observed in the sensor frarfié} at timet;
0q = 2 1 (18) denoted{ S (1)}, subsequentlyr, is measured at tim&. The corresponding
\/1 + iggcTOTrggwrr vectors “h; (t1), “ha(t1), and “h;(t,) span the3D space, hence the
observability Gramian [see (23)] is full rank.

The quaternion and the bias estimates are updated as

S _ 6a® S 7 19 - -
?HWH Aq Do+ 1]k (19) where “h;(t,) = “£;(tx) x e;. If over a period of time the
by t1jk+1 = b1k + beorr- (20)  sensor observes two or more surfaces with normealshat

: T
The last step in this process is the covariance update ~ SPanR?, and recalling that’¢; e; = 0 [see (11)], then the

. . Y o vectors©h; span the3D space, ensuriniyl to be of full rank.
Ppiijpr1 = (Ie — kh' )Py (Is —kh™ )" +057°kk™ . Fig. 4 depicts a scenario in which the observability propert
(21) s fulfilled. n

3) Attitude Observability:Due to physical limitations of
planar laser scanning, we can only resolve all three degifee$3. Person Heading Estimation
rotational freedom from a stationary vantage point in a few In the previous section, we introduced a method to estimate
scenarios (Chen 1991). The attitude of the cane, howewvéie 3D attitude of the cane with a 3-axis gyroscope, while
is observable when the cane is in motion. In what followstilizing the laser-scanner observations of the perparalic
(see Lemma 1), we prove that the observability requirememsilding planes as a 3D structural compass to update the
are satisfied while the white cane is being used. attitude. In what follows, we describe how to extract the
Lemma 1:All three degrees of rotational freedom are obperson’s heading direction from the 3D attitude estimate of
servable when the laser scanner measures at least two nlagncane.
directions in space, at different time steps, over a givenDuring typical usage, a person walking with a white cane
interval. will hold the cane out in front of them with its tip on the
Proof: Since observability of the attitude entails observground, swinging it to the right and to the left in order to
ability of the bias, we focus on a simplified measuremeudetect potential obstacles and hazards in their walking.pat
model with only the quaternion as state variable, and meBhe yaw angle of the cane, which we obtain by converting the
surement matrix [see (14)] guaternion estimate tepy, will be a cyclostationary random
T T AT~ process whose amplitude, phase, and frequency may all ehang
B (t) = —e/ C" (a(te)) *&:(tr) <] (22) (see Fig. 5). Although this random process exhibits valitgbi
In order to establish observability of the attitude, it stéf to depending on the person and trajectory, we have found that th
show that the observability Gramian heading of the person can be well approximated as the mean
N value of the cane’s yaw over a period of swinging. Thus, we
_ T _ T can apply signal-processing techniques to obtain the pi&rso
M= ;Z(P (ti, )b (b )by (t4) (1, 0) (23) heading direction as the dc component of the cane’s yaw
_ o estimate. This motivates the use of a Finite Impulse Regpons
1S of fuII_ ranl_< for some finite V (M_a_ybeck 1979). Not- (FIR) filter, to remove the high-frequency component of the
ing ttkhat in this cas? the state transition matf]»l)(t;?,o) = yaw. The attitude is propagated @60 Hz, and we have
— Jo lwx]dr = C(q(ty)) (Trawny and Roumeliotis 2005), 5hserved over several trials with different users that tigé h
the ot_aservablhty Gramian can be written as the sum of ﬂ?leequency component of the cane's yaw signal does not fall
following vector outer products below 0.5 Hz. In order to reduce the number of taps needed
N by the FIR filter, the yaw signal is down-sampled by a factor
M = Z Z “h;(ty)“h] (tx) of 40. The signal is then filtered using@" order FIR filter
k=1 i with Kaiser windowg = 0.5 and normalized cut-off frequency

i
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400 T

may have some uncertainty, and we accommodate both cases
in our estimator. While a person is traversing a single floor,
their motion will be constrained on the plane of that floor.
1 This allows for the use of aD odometry propagation model.

1) Position Propagation:The non-holonomic formulation
of the odometry state equations requires that linear and ro-
tational velocity measurements be available during the{ro
agation stage. These constraints are relaxed for the case of
41 a person. Linear velocity measurements are provided by a
foot-mounted wireless pedometer. Note that rotationaiaigt
measurements need not be accessible as the person’s heading
direction is available from the FIR filter. This odometric deb
is also known as direct heading odometry (Kelly 2004). The
! 41 state and state-estimate propagation equations are:
% 20 20 %0 % 100 120 1490 160 |:Ik+1:| = [xk] + vit [COS (¢):| (24)

Time (sec) Yk+1 Yk sin (ZZJ)

T T
Estimated Cane Yawt

— - Filtered Cane Yaw

350

300

250

N
=3
=}

Heading (deg)
.
3

Fig. 5. The yaw component of the cane’s attitude estimatétguloalong Tpr1| |2k + v, 5t cos (Ym) (25)
with the low-pass filtered yaw. In the results presented,hteefrequency of Ukt1 - Uk m n (¢m)
the cane’s swinging motion is betwe@nand 2.5 Hz, and the amplitude is

between20 and 30 deg. wherex = [z y]" and¢ are the position and heading of the
person, and is the average velocity during the time interval

0.02. Fig. 5 depicts the yaw component of the cane’s attitu % The velocity measured by the pedometer and the measured

estimate along with the FIR filter's output. €ading direction are

There are several important considerations which need to U =V + Ny, Y =9+ Ny
be addressed when employing this procedure. The first i th . locit d headi
how close the mean of the yaw signal needs to match thaere he_terrGors In velocitys,, an 't(:\a ngiy., aredzego_
person’s heading direction. We have seen over severas trig]ean \tN Ile Tr?u?smn .prc()jcesses tWIt vagalmltksan Topr
with different people that if the dc component is within twd ESPECUVEly. The linearized error-state modet 1S
or three degrees of the true heading direction, then the filtez, 1 _ | %k =0t cos (V) Um0t sin (V) | |1
performs well. In order to accommodate users who exhibitg1 Tk —0t sin ()  —vmdt cos (Ym)| |y
significant bias (e.g., ten de_grees or_mo_re), we are inagstig Rpi1 = Xp +Tn (26)
methods to detect and estimate this bias on-line. The second _ o
important consideration is the time-delay introduced by tfnd thus the covariance propagation is computed as
FIR filter. Although the filter has only seven coefficientalel - o2 0
pairs, there is a delay df.2 sec because the down-sampled Pr+1jk = Prjp +TQI, where Q = [0 ng] - (27)
yaw signal has a sampling frequency2of Hz. As a result, an " _ , . . .
equivalent time-lag exists in the position estimate. Hasvey 2) Position Update: The person’s position estimate is
since the average walking speed of a person is betwddfated by incorporating relative position measurements t
1.25 and 1.51 m/sec (Knoblauch et al. 1996), this time |ad<nown landmarks in the environment. Although the selection
does not prohibit real-time operation. A third considematis ©f features is flexible, using comers at hallway intersedi
how the heading estimate is affected when the cane collid&s® 900d choice for an indoor environment because they
with obstacles in the environment. Fortunately, the gyopsc &€ Prevalent and can be extracted reliably from the laser
sampling frequency is high (0 Hz), and it accurately capturesScanner data (see Appendix A). A corner is identified as
quick changes in the cane's rotational velocity. Thus, evélﬁe intersection betw_een two lines extracte_d fr_om the odd-
during collisions the cane’s 3D attitude is estimated arilye indexed laser data. Since we are only considering corners at

and the person’s heading direction is reliably computed. the |nterse.ct|on. of structurgl planes _(|.e., wall intetiets
at hallway junctions) each line must first be matched to one

N o of the building planes [see (15)]. The end points of the two

C. Layer 2: Person Position Estimation lines must be closer than a distance threshold (e.g., 5 cm),

Estimating the position of a person within a building isvhich ensures that the two lines truly intersect at the aorne
treated as @D estimation problem in which each level ofin this way, our corner extraction method is robust to chitie
the building is a separate planar environment. In this ségnathe environment, and we reliably match measured corners to
we utilize a building map comprised of corner features thabrners in the map using a probabilistic data associatiep. st
correspond to the wall intersections at hallway junctiofe. The robustness and reliability of the line fitting and corner
assume the map is availaldepriori, and is computed either extraction procedures are discussed further in Appendix A,
from the building blueprints or by a robot which has previgus and for now we turn our attention to the mathematical model
explored the environment. The map may be perfectly known osed for the position update procedure.
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@ of (29), provides the linearized error model
2~ —°ps+ TCT(q) |*Prix]00 — TCT () °bu.
g - “Pui . =-Lx+[TCT(q) |°Prmix] —-TCT(q)] { ?L]
— =Hx+Gn, (31)
{ } whereH andG are the Jacobians with respect to the state and

- measurement, respectively. The error veaigris comprised
€ Ps of the quaternion error vectaff, and the error in the corner
measurementp,,. Note thatn, is zero-mean, white Gaussian
G noise, with covarianc®.
G} e In order to perform data association, we form the measure-
ment residualy = z — z = —Z [see (29)], and the covariance
Fig. 6. The corner measuremenitp.; is the point of intersectiovn between of the measurement residudl = HPk+1|kHT +GRGT.
the corner and the laser scan plane, express¢djn The vector”ps is the \ye compute the Mahalanobis distance for the measurement
origin of {S} with respect to{ G}, and“pr; is the corner with respect to . . _
(G} corresponding to each landmark, i.€;,= r”’S~'r, and we
only declare a measurement-to-landmark match if the mini-
mum distance is below a preselected probabilistic threshol

_ N _ _ _ In this way, we ensure that the filter is robust to erroneously
The relative position measurement is derived using3iBe getected corners.

€3

geometric relationship depicted in Fig. 6, i.e., If the measurement is found to match a corner in the map,
. then we proceed with the update, and compute the Kalman
GpLi = Gf)s +C (Q) Spu (28) gain

where®p,. is the3D vector describing the intersection of the K = PryipH' (HP ) H' + GRG') (32
cornerL; with the laser scan plané€p,, is the3D vector from The state estimate is updated as

the origin of {G} to the intersection point, anfép is the3D

position of the sensorTwith respect{6/}. The2D position of Rit1)k+1 = Rpy1x + Kr (33)
the persornx = [x _ v _» is approximated by the projection of g astly, the updated covariance is computed as

the sensor’s position in the-y plane of{G}. Hence, the first .

two components ofps = [z y z] comprise the state Priijpsr = (o = KH)Pyy (I — KH)

vector of the position filter [see (24)]. +KGRGTKT, (34)

The measurement model used for updating the person’sOur osition update procedure readily extends to the case
position is obtained by bringing all quantities in (28) to b P P y

the left-hand side and applying ttiex 3 projection matrix 2‘1""“ imCE)erfecthA]ap. we de;‘i~ne t_he I_andmark position error as
T = [e; e2}T on both side? i.e.. Pr, = “Pr, — “Pr,, Where®p, is distributed as zero-mean
white Gaussian noise with covarian&,,. We modify the
2= (s, — “ps — C7(q) °py.) :igﬁarized-error model to account for the uncertainty s, ,
=“pr. — “ps — TCT(@) “pr = 021 (29) G =
z~Hx+[-I, G { I‘:Li]
where“p,, is the 2D position of the landmarll; which is R L P
known from the map, andps = [z y]T = x is the 2D =Hx+G'n, (35)
position of the sensor iRG'} (or equivalently, theD position - wheren!, and G’ are the new measurement noise, and its
of the person). Applying the expectation operator on thé-firgjacobian, respectively. We then compute (32), (33), anil (34

order Taylor series approximation of (29), we compute thging the new linearized error model, and perform the positi
expected measurement as update.

2="°pL—°Ps —TCT(q) °Pro: (30) IV. EXPERIMENTAL RESULTS

where“pg is the estimate@D position of the origin of{.S} A. Hardware Description

with respect to{G}, while *p,,.. = “p.. — °p., is the ~ When designing the sensor platform used in this work, the

measured3D position of the intersection of the laser scamain criterion for the sensor selection and placement wais th

user. For this reason two of the three primary sensors are

e _ o _ _ affixed on the white cane (see Fig. 7), and the third is foot
Since (28) contains unknown gquantities which are neitheasueed nor d Th b . hed he handl f th
estimated (i.e., the-coordinates of p..; and S ps), the 2D relative position mounte - 1€ sensor bay 1S attache near t e handle o the

constraint is obtained by projecting (28) onto they plane of {G}. cane which has length.27 m. The cane is a lightweight,
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Fig. 7. A view of the white cane and sensing hardware. Theasdray is mounted near the handle of the cane. Note that traf tige cane is unobstructed,
and the user maintains the ability to physically sense thddwdhe weight of the sensor package is approximatly g.

x10°
1 T

09 7

0.06

T T T
Trace of Attitude Covariance‘

T T T
Trace of Position Covariance

0.05- 7

4
©
T
I

o
QJ
T
I

o
=)
T
I

g o
S £
= 05f ] & 003r E
= 5
041 B
0.02
0.3F B
0.2r B
0.011 B
0.1F B
0 . . . T o . . . . . . . .
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Time (sec) Time (sec)

Fig. 8. The trace of the attitude covariance demonstrates ihile the Fig. 9. The trace of the position covariance verifies thatgbsitioning un-
cane is stationary (firstO sec during bias initialization) its attitude is initially certainty remains bounded, but grows linearly with timenssn consecutive
unobservable, however, it becomes observable when theiganenotion. position updates.

carbon-fiber model, selected so that the total weight, tioly B. Experimental Results

sensors, is approximately the same as a standard white canérne estimation algorithm described in this paper was tested

The laser scanner is an URG-X002S which meas@res in an indoor environment on a closed loop of path length
by 5 cm by7 cm. It has an angular scan range2df deg, with 130 m. Twenty-one corners along this loop were knoavpri-
an accuracy oft1% of the measurement for distancesn to ori from the building blueprints, and were used as features for
4 m. Closer thanl m the measurement accuracyt§0 mm. position updates as described in Section 111-C2. While \wejk
The laser scanner can measure distances rangingtfi@m around, the user avoided potential hazards by swinging the
to 4 m. The scanner weighs60 g and consumeg.5 W at cane to the right and to the left at a frequency2db 2.5 Hz
5 V. The 3-axis gyroscope is an ISIS Inertial Measurementith amplitude of20 to 30 deg. Fig. 10 shows the estimated
Unit (IMU), with an angular-rate range af90 deg/sec. Over trajectory super-imposed on the floor diagram. The striped
an RS-232 connection, the ISIS IMU provides measurememégions in the figure depict obstacles such as couches and
at 100 Hz. The weight of the sensor i863 g, and the garbage cans, which are not detailed in the building bluepri
power consumption i$.72 W at 12 V. The IMU measures Additionally, some of the doors along the hallways were gpen
5.5 cm by 6.5 cm by 7 cm. The pedometer i8.5 cm by while others were closed. During testing there was a normal
3.5 cm by 3.5 cm, and transmits communication packets vilow of pedestrian traffic through the hallways. All of the
Bluetooth at a rate of Hz. Power is supplied to the sensorcorners in the map are shown as boxes, and every measurement
bay by8 RCR123A rechargeable lithium-ion batteries whickvhich was used to update the position estimate is marked with
are placed inside the cane handle and have a combined wemgline to the corresponding corner.
of 136 g. All the sensors were interfaced via USB, RS-232, Results for the first layer3D attitude EKF) are plotted
and Bluetooth, respectively, to an ultra-portable SonyoVain Fig. 8, which depicts the trace of the attitude covariance
(VGN-UX series) which has dimensions$ cm by 9.5 cm matrix with respect to time. During this experiment, the t&hi
by 3.2 cm, and weigh$40 g. The computer can be carried incane was initially stationary fot0 sec for the purpose of
hand, or in a case connected to the user’s belt. The real-tijy@oscope bias initialization. As evident, the trace of the
software components are written in C++, whereas the sotwaattitude covariance becomes bounded once the cane is in
for simulation and data plotting is written in Matlab. motion. This supports the observability analysis of theeys
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Fig. 10. The estimated trajectory is plotted (black), asierlon the building blueprints, for an experimental trialah30 m loop. The start and end locations
are in the lower left-hand corner of the map. The directiotrafel was counter-clockwise around the loop, which isdatéid by the arrows on the trajectory
(brown). Corner measurements are depicted (red), alortg thet correspondingo position uncertainty (blue) at the time when each measunemecurred.
The squares (black) denote tBé corners that were included in treepriori map. The striped regions on the figure depict locations afifure and other
objects not represented in the blueprint.
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Fig. 11. Thez- andy-axis position measurement residuals plotted with theiFig. 12. The residuals of the attitude update measuremdatieg with
corresponding3o bounds computed from the residual covariance. This is ahe 3o bounds computed from the residual covariance. Note thatitite of
indication of the consistency of the filter, and one of the kbgracteristics the vertical-axis are intentionally omitted considerimgtt this measurement
which we examine in real-world experiments when groundhtrig not residual is by nature unit-less (difference of unit-veaot-products). In order
available. to clearly see the residuals and bounds we are showing atgappeox.200)

of the 5,000 attitude updates which were processed during this expatime

since the laser scanner observes planes whose normalvedRmumeliotis 2005) we can infer that when the orientatioorerr
spanR? while in motion. is bounded, i.e.gy < 0y, the position covariance grows as

The uncertainty in the position estimate is _s_mall (max. P(t) < 0.5 (0'12,+012/, v25t2) P—— (36)
o = 0.16 m), even though the number of position update 0
measurements are few (onfyof the corners were detectedin our experiments§t = 0.1 sec anda = 9.8204 x 104
in approximately110 laser scans). The reason the positiomhis means that for the case of direct heading odometryyKell
filter is precise despite the relatively infrequent positippdate 2004), the position uncertainty grows approximately lnhea
measurements is due to the high quality of the headimgth time between consecutive position updates. Thus, even
estimates provided by the attitude filter. The attitudenestes when detecting only a small number of corners, the position
of the cane are accurate as a result of more thad00 filter maintains a good estimate. This argument is corrdiedra
relative orientation measurements obtained during theerexpby the time evolution of the trace of the position covariance
iment (see Fig. 8). Based on the analysis of (Mourikis arithe value of the trace never excedil854 m? which corre-
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sponds to approximatel§.16 m 1o error in each direction method exploits the uncertainty in each laser point to segme
(see Fig. 9). Furthermore, the consistency of both theudtit the laser scan into multiple lines and compute an estimate of
and position filters is verified. The- andy-components of the the line parameters for each line in the scan. We also discuss
position measurement residuals fall within the bounds of issues of robustness and reliability of the line extraction
the residual covariance (see Fig. 11). Similarly, the dagon algorithm for detecting the structural planes as well asieor
measurement residuals lie within tBe bounds of the residual features in the environment.

covariance (see Fig. 12). The filter consistency is alsdiedri When a new laser scan is recorded, the raw data is
by the position error at the end of the run (hand measuredpartitioned into the even-indexed and odd-indexed points,

be 10 cm) which lies within the3o bounds. which will be utilized in the first and second layers of the
estimator, respectively. We process the two halves of the
V. CONCLUSIONS ANDFUTURE WORK data independently to ensure that the two layers of the filter

This paber presents a novel aoproach to indoor IocaIizatiE)enmain statistically uncorrelated. If we were to reuse the
Paper p bp Same laser data in both layers, then their estimates would

for the visually impaired. In our proposed estimation SChembe correlated. Although there exist techniques for dealing

information from a pair of cane_—mounted sensors, and afo%i'th such correlations (Mourikis et al. 2007), for the sake
mounted pedometer is fused in a two-layer pose estimatQ

The first layer utilizes inertial measurements fronB-axis o simplicity we have opted to use only half of the points in

i . . each layer.
gyroscope and relative orientation measurements fronr lase

scanner data to accurately estimate the attitude of theewhit scan Segmentation

cane. The second layer esur_nate_s the p03|t_|on of the PETSORpe first step of the weighted line fitting algorithm is to
holding the cane, by processing linear velocity measurésnen

. . ) segment the data into groups of points which belong to the
from the pedometer, a filtered version of the cane’s yaw : . .

. same lines. To accomplish this task, we employ the standard
estimate, and corner features extracted from the Iasenecar]_|

data ough Transform (HT), which is a voting-based scheme that

. . N . identifies groups of points that are roughly collinear. A 2D
A desirable feature of our system is that it is lightweighd an rid is constructed in which every grid cell corresponds to

unobtrusive, and since itis cane mounted, the person niant he polar coordinates of a single line. Each laser data point

the ability to physmally touch .the_envw.onm_ent. we _demonv'otes for the line that it most closely matches, and the grid
strate the validity of our localization aid with experimeht

results showing that we can provide accurate pose estim ?ggs with the most votes are taken as possible lines in the
9 . pr ) P q4ser scan data (Duda and Hart 1972). We note that the results
of the person even in dynamic environments. Our syste

; S . SYSIR the HT need not be perfect since we will refine each line
requires no building instrumentation. Instead, we utileze

corner map which can be obtained from the building queprinEztlamS:Ebzgﬁi:tlij g Sn?gtlﬁ]?:g gwr((a)::geedilrrgllar lines segmesesiba
or generated by a robot exploring the environment beforghan '

Furthermore, we analyze the observability properties ef tig | jne Fitting
system and provide a sufficient condition which ensures that

we can accurately estimate the 3D orientation of the Whiaeetermined by the HT), the weighted line fitting problem

cane. . . .
. . . o seeks to determine the optimal line parametgrs ¢*) that
In our view, the described white-cane based localizati@a sy P b s ¢7)

tem has th tential t head the devel Cof i dmaximize the probability that each point lies on the lineeTh

em has the potential to spearhead the development ot INAREL, e [aser points are described by their polar codedina

navigation and guidance aids for the visually impaired. A& p dov i i), j = 1 N, which correspond to noise-
NERA A - 3t )

ofou_rfuture work, we pla_n to_ext(_end the proposgd_system_aé rrupted versions of the true points that lie on the line of

algorithm to support navigation in unknown buildings Wh||§nt

. ersection between the laser scanning plane and a stalictu
concurrently constructing a map of the area. We also envisi lane. i.e

Given a set of N points that are roughly collinear (as

an Internet-based map distribution system in which diffef-
ent visually impaired users can collaborate and refine maps djm = dj +na (37)
which their white canes have constructed, adding contéxtua O0.m = 0 + g (38)

and semantic information. Our future work also includes the . .
. - . where n; and 7y are zero-mean white Gaussian random
design of path planning routines to generate routes between: . . 2 o . X
. . . variables with variances; and o, respectively. We define
indoor locations, as well as a haptic feedback system to giye ! .
: o . .~ “1the distance from a measured point to the line as
the person simple directions. A software implementation on

a small-scale computing device such as a personal digital €j = dpm,j cos (¢ — Omj) — p- (39)
assistant, or an embedded computer is also within our sheghm this, we formulate a Maximum Likelihood Estimator
term goals. (MLE) to determine(p*, ¢*), i.e.,
APPENDIX A (0", 0%) = ar%fnaxﬁ ({ejHp: @)
In this appendix, we provide a brief overview of the = argmax L (e1|p, ) L (e2|p, @) - - - L (en|p, D)
weighted line fitting method that we employ for extracting 0

lines from the raw laser scan data (Pfister et al. 2003). This (40)
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Raw Laser Data correspond to the same physical line, then a new line is
15 ; ; ; ; ; ; computed by merging the line estimates. The closed-form
solution to compute the line parameters and covariance for
L o the merged line are given in (Pfister et al. 2003).
E o5l O~ D. Robustness and Reliability
> N~ There are several key observations that should be made
'3 about the robustness and reliability of the line fitting @oc
or | dure. First, we cannot detect every line in the laser data. In
fact, the HT-based methods have been empirically evaluated
-0.5 : ‘ : ‘ : ‘ and found to have a true positive rate arowtd; (Nguyen
=25 -2 15 -1 05 0 0.5 1 etal 2005). However, for the lines that are detected, waiobt
x (m) the optimal estimate of the line parameters (in the MLE sense
Extracted Lines Second, we will have false positives, which are detected
15 ‘ ‘ lines that do not correspond to lines of intersection betwee
the structural planes and the laser scan plane, but instead
1t correspond to nearby furniture or obstacles (see Fig. 13).
However, detecting incorrect lines is typically not an issu
— since these lines are discarded during the data association
E os} '|'\+ 1 step (i.e., they will not match one of the structural planés o
> the building). To aid this, we set thresholds on the minimum
ol 1‘_ | number of points per line and the minimum line length that
we will accept. Third, the robustness of the line extractiod
data association step enable reliable corner extractiomets
-0.5 : : : : : : are only declared if two line segments in the scan have been
-25 -2 -15 -1  -05 0 0.5 1

gated, and their end points lie within a threshold distance
of each other. Furthermore, after each corner is detected, w
Fig. 13. (top) Raw laser scan in which the laser scanner wadegubinto a perform a prObabIIIStIC data association .te.St.tO Verlfyt ﬂha.
corner. The laser scan plane intersects with a person'sasgsell as with the Matches one of the map corners before it is incorporated into
right and left walls. Since the laser scanner is cane-maduawtel inclined with  the filter.

respect to the world, the0 deg corner appears obtuse in the data. (bottom) r; ; ; it
The lines extracted from the laser data (red line segmenigekea black ‘plus’ Fig. 13 illustrates typlcal results from the laser scannmn

sign endpoints), the two walls are correctly extracted, amel of the person's Procedure. Even in the presence of an obstacle (i.e., psrson
legs is also extracted, but discarded later on since it ig skort. The corner Iegs), the left and right walls are correctly extracted hAllgh

at the intersection of the left and right walls is also idiéed (boxed in blue). one of the Iegs is identified as a short line segment, this
measurement is rejected by the filter's data associatiqgn ste
The corner at the intersection of the left and right wallsls®a
{dentified in this scan.

x (m)

where”L ({¢;}|p, ¢) is the joint likelihood ofe;, j =1,...,N
given the line parameters. Based on the assumption of in
pendently distributed Gaussian noise [see (37) and (3&], w
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