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Abstract— This paper presents a novel 3D indoor Laser-aided
Inertial Navigation System (L-INS) for the visually impair ed.
An Extended Kalman Filter (EKF) fuses information from an
Inertial Measurement Unit (IMU) and a 2D laser scanner, to
concurrently estimate the six degree-of-freedom (d.o.f.)position
and orientation (pose) of the sensing package and a 3D map of the
environment. Rather than constraining the person to purelypla-
nar motion, the IMU measurements are integrated to estimatethe
pose along a general 3D trajectory. To mitigate the accumulation
of inertial drift errors, the pose estimates are corrected using laser
measurements, namely line-to-plane correspondences between
linear segments in the laser-scan data and structural planes of
the building. Utilizing orthogonal building planes as map features
results in a human-interpretable layout of the environment, and
ensures that the each feature can be efficiently initializedand
estimated. A practical method is presented to initialize the pose
and the IMU biases using observations of known planes and
zero-velocity updates, respectively. In addition to the filter design,
the observability properties of the nonlinear system are studied
to show under which measurement conditions the 3D pose can
be accurately estimated. Lastly, an approach for utilizing the
sensors’ measurements to perform on-line calibration of the
laser-to-IMU transformation is developed, which enables the
highest possible localization accuracy. The proposed L-INS is
experimentally validated by a person traveling in both known
and unknown 3D environments to demonstrate its reliabilityand
accuracy for indoor localization and mapping.

I. I NTRODUCTION

For humans, safe and efficient navigation requires knowl-
edge of the environmental layout, path planning, obstacle
avoidance, and determining one’s position and orientation
(pose) with respect to the world. For avisually-impaired
person, these tasks can be exceedingly difficult to accomplish,
and there are high risks associated with failure in any of
them. To address some of these issues, guide dogs and white
canes are widely used for the purposes of wayfinding and
environment sensing. The former, however, has costly training
requirements, while the latter can only provide cues about
one’s immediate surroundings. On the other hand, commer-
cially available electronic navigation systems designed for the
visually impaired (e.g., Humanware (2010), Sendero (2010))
rely on GPS signals and cannot be utilized indoors, under tree
cover, or next to tall buildings where reception is poor.
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In the academic community, numerous electronic navigation
systems for GPS-denied environments have been proposed.
However, the majority of the existing algorithms are designed
for mobile robots that are limited to move on planar surfaces
(Thrun et al. 2000; Iocchi and Pellegrini 2007) or require
heavy sensors, such as a 3D laser scanner (Hähnel et al. 2003;
Borrmann et al. 2008), that cannot be carried by a human.
Other algorithms, which have relied on visual information
(Kim and Sukkarieh 2007; Mourikis and Roumeliotis 2008),
are sensitive to variable lighting conditions and require pro-
cessing resources that are not typically available on portable
computing devices.

To address these issues, we aim to design a personalindoor
navigation system that fulfills the following requirements:

• The system must accurately track thesix degree-of-
freedom (d.o.f.) poseof the visually impaired person,
allowing them to safely navigate in a3D environment.

• The navigation aid should enable the person to walk
through previouslyunknown buildingswithout getting
lost. This requires constructing a map of the explored
area and localizing with respect to it inreal-time.

• The selected sensors should berobust to environmental
changes, such as lighting conditions, reliable in the pres-
ence of clutter and moving objects, and work within the
computational and memory limitsof a portable computing
device.

• The navigation aid should becompact, unobtrusiveto
the person, andlightweightenough to be carried without
fatigue.

To meet these objectives, we are focused on designing an
indoor Laser-aided Inertial Navigation System (L-INS) using
an Inertial Measurement Unit (IMU)and a2D laser scanner,
based upon our preliminary results in Hesch et al. (2009,
2010). Employing this sensor pair ensures feasibility of manu-
facturing a light-weight and compact sensor package that can
be carried by a person, since a wide variety of small IMUs
(e.g., Memsense nIMU) and compact-size 2D laser scanners
(e.g., Hokuyo URG) are commercially available. Additionally,
using a laser scanner instead of a camera provides greater
reliability and robustness under poor lighting conditions.

The proposed algorithm tracks the six d.o.f. pose of the
person by integrating the IMU measurements (linear accelera-
tion and rotational velocity) using an Extended Kalman Filter
(EKF). However, without corrections from an exteroceptive
sensor, the IMU measurement noise and bias drift would
cause the pose estimation errors to grow unbounded over
time. To mitigate this issue, we propose to update the pose
estimates by utilizing straight-line features extracted from the
2D laser scans. In particular, as the person moves, the laser
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scanner’s attitude changes which causes its scanning planeto
intersect a variety of structural planes of the building (i.e., the
walls, floor, and ceiling). If the structural planes are known
a priori from a building map, we can use the information
from the line-to-plane measurements in order to update the
person’s pose estimates (Hesch et al. 2009). Unfortunately,
in many cases in practice, a building map is not available
in advance. To overcome this challenge, we simultaneously
construct a building map in order to utilizepreviously unknown
structural planes in the localization process (Hesch et al.2010).
We exploit the fact that most indoor structural planes are
orthogonal to each other, which allows us to fix each plane’s
orientation the first time it is observed, and only estimate its
distance to the origin of the global reference frame.

Constructing the map based on orthogonal planar structures
has the advantage of keeping the person’s orientation error
bounded (Nguyen et al. 2006) in addition to providing inherent
robustness to clutter and moving objects. Furthermore, the
estimated map directly provides ahuman-interpretable layout
of the building that can simplify the task of wayfinding
towards a destination. Moreover, due to the limited number
of structural planes in each building, the computational load
of the algorithm remains bounded. This, together with the low
processing cost of line-segment extraction from the 2D laser
scans, ensures the real-time execution of the algorithm on a
hand-held computer with limited computational and memory
resources.

We demonstrate the validity and reliability of the proposed
approach with real-world experiments in both known and
unknown environments. In the first case, we present a loop
trajectory of 120 m in length that covers part of one floor of
the Keller Hall at the University of Minnesota. The second
test covers multiple levels of Akerman Hall at the University
of Minnesota. In this 270 m trajectory, the person traverses
several staircases and a disability access ramp. In addition,
both test environments includes significant clutter (e.g.,trash-
cans, storage boxes, and furniture), as well as a normal flow
of pedestrian traffic. Despite these challenges, our algorithm
accurately tracks the person’s pose, and correctly estimates a
map of the building layout.

In order to ensure that the IMU and the laser scanner
measurements provide sufficient information for estimating the
person’s pose, we study the observability of the corresponding
nonlinear system. We also address the more practical matterof
how to efficiently initialize the filter. Lastly, we provide anovel
on-line method for calibrating the laser-to-IMU transformation
using either previously known or unknown planar features,
since inaccurate calibration can lead to biased filter estimates.

The remainder of the paper is organized as follows: In
Section II, we begin with an overview of the related literature.
Section III presents the core of our algorithm, which is an
EKF-based pose estimator. We describe how to efficiently
initialize the state of the filter in Section IV. In Section V,
we study the observability properties of the map-based lo-
calization system, and show the system is observable under
mild conditions that are typically fulfilled in practice. Subse-
quently, we describe our approach for calibrating the laser-
to-IMU transformation using line-to-plane correspondences in

Section VI. Experimental validation of the proposed method
is provided in Section VII. Lastly, we conclude the paper and
present future research directions in Section VIII.

II. RELATED WORK

Recent work has focused primarily on developing hazard-
detection aids for the visually impaired with the purpose of
detecting and avoiding obstacles(Ulrich and Borenstein 2001;
Yuan and Manduchi 2005) and describing objects’ size and
color (Hub et al. 2004). These systems cannot be directly used
as wayfinding aids without the development of appropriate
algorithms for localization. In contrast to the above systems,
navigation aids have been designed that explicitly track a
person’s location and heading direction. Most relevant ef-
forts have primarily addressed GPS-basedoutdoor navigation
which cannot be used inside a building (Makino et al. 1996;
Ran et al. 2004).Indoor navigationis more challenging, since
pose information can only be inferred from ego-motion and
environmental cues. In what follows, we provide a discussion
of several existing indoor navigation systems.

1) Navigating using ego-motion:Dead-reckoning systems
track a person’s posewithout any external references. Com-
mon approaches are based on foot-mounted accelerome-
ters (Cavallo et al. 2005). As a person walks, their position
is computed by double integration of the acceleration mea-
surements. Unfortunately, the accelerometer bias and noise are
integrated as well, which causes theposition error to grow
unbounded. Even if the rate of position-error increase can
be reduced with static-period drift corrections (Sagawa etal.
2000; Borenstein et al. 2009), dead-reckoning systems still
remain unreliable over long time intervals.

2) Navigating with known references:Unlike dead-
reckoning approaches that do not employ external references,
map-based systems infer position and orientation information
from known landmarks or beacons in the environment. For ex-
ample, in Kulyukin et al. (2004), a robot is attached at the end
of a leash as a substitute for a guide dog, and localizes using
odometry and a network of Radio Frequency IDentification
(RFID) tags. Tjan et al. (2005) presented another approach
in which a hand-held camera identifies retro-reflective digital
signs. Similar methods also exist based on ultrasound (Ran
et al. 2004) and infrared (Ertan et al. 1998) beacons. In our
previous work (Hesch and Roumeliotis 2010), we presented
a map-based indoor localization aid for the visually impaired
comprised of a pedometer, a tri-axial gyroscope, and a 2D laser
scanner. We exploited known corners at hallway intersections
(computed from the building blueprints) as landmarks for
localization. Unfortunately, all map-based or beacon-based
localization methods suffer from common limitations which
include: (i) time and costassociated with acquiring the map
or installing the beacons, (ii) the system’sinability to adapt
to spatial layout changes, and (iii) therestriction of use to
previously mapped areas.

3) Navigating in unknown environments:The most flex-
ible navigation aids are those that can exploit environment
sensing to perform Simultaneous Localization and Mapping
(SLAM). The majority of the proposed systems for SLAM
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consider either 2D map and sensor motion (Smith et al. 1990;
Dissanayake et al. 2001), or restrict the sensor motion to planar
surfaces and create a 3D map of the surroundings (Thrun et al.
2000; Iocchi and Pellegrini 2007; Nguyen et al. 2006). These
algorithms are not generally suitable for use on a personal
navigation system since the motion of a human is not limited
to a planar surface (e.g., when climbing stairs).

There exist several approaches for estimating a 3D map
and the six d.o.f. pose of a robot (3D SLAM) that employ 3D
point cloud matching techniques [e.g., Iterative Closest Point
(ICP)] (Hähnel et al. 2003; Borrmann et al. 2008; Kohlhepp
et al. 2004; Nüchter et al. 2004; Cole and Newman 2006).
However, the computational requirements for matching 3D
point clouds are typically prohibitive for real-time implemen-
tation. More importantly, the 3D laser scanners needed for
acquiring the point clouds are too large and heavy for a person
to carry, thus making these systems inappropriate for use as
a personal navigation aid. Alternative methods for performing
3D SLAM employ cameras to map the environment based
on visual landmarks (Mourikis and Roumeliotis 2008; Kim
and Sukkarieh 2007). The main drawback of camera-based
systems is their sensitivity to variable lighting conditions,
which restricts their use as navigation aids for the visually
impaired where reliability is of paramount importance. Addi-
tionally, processing images and extracting visual features are
typically computationally intensive tasks that are impractical
to carry out on hand-held computing devices. Furthermore,
constructing a map of the 3D locations of visual landmarks
(e.g., SIFT features (Lowe 2004)) often used in these ap-
proaches may not be geometrically meaningful or interpretable
by humans. Finally, extracting and matching visual landmarks
in indoor environments can be challenging and unreliable due
to insufficient texture.

To address these limitations, we propose an L-INS based on
a 2D laser scanner and an IMU. The key differentiating factor
of our work is that we can explore and map 3D environments
with a sensing package that follows arbitrary 3D trajectories,
despite the fact that the exteroceptive sensor employed only
senses in 2D during each laser scan. Specifically, our system
tracks the six d.o.f. pose of the person and measures both
known building planes as well as new planes which it maps
as the unknown portions of the environment are explored.
We note that using commonly-occurring structural planes
as map features ensures the applicability of the method in
practice. The estimated structural planes directly represent the
geometric layout of the building that can be easily interpreted
by humans. Moreover, due to the limited number of structural
planes in each building, the computational requirements of
our algorithm do not grow unbounded over time, since the
size of the estimated state vector remains bounded. Finally,
our algorithm can performon-line calibrationof the relative
pose between laser and IMU, which was assumed known
in our previous contributions (Hesch et al. 2009; Hesch and
Roumeliotis 2010).

III. A LGORITHM DESCRIPTION

A hand-held computer collects measurements from the
navigation aid consisting of an IMU and a 2D laser scanner,

{G}
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Gπi
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Lℓ⊥
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(GpI ,
Gq̄I)

φ
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Iq̄L)
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Fig. 1. As the IMU-laser sensor platform moves, the laser scan plane
intersects a structural planar surface,Πi, described bydi andG

πi, which are
the Hessian normal form components of the plane with respectto the global
frame of reference,{G}. The shortest vector in the laser scan plane from the
origin of the laser frame,{L}, to Πi has lengthρ and directionL

ℓ, with
respect to{L}. The line of intersection has direction,L

ℓ
⊥, with respect to

{L} and is described by the polar parameters(ρ, φ). The vector from the
intersection ofGπi andΠi to the intersection ofρLℓ andΠi, is Gt. The
IMU-laser transformation is denoted by(IpL,

Iq̄L), while the IMU pose with
respect to{G} is (GpI ,

Gq̄I).

which are rigidly connected (see Fig. 1). The sensor data
is fused in an EKF to concurrently estimate the six d.o.f.
pose of the sensor platform, as well as the 3D map of the
building’s perpendicular structural planes (i.e., the walls, floor,
and ceiling). In what follows, we present the propagation and
update models used by the EKF.

A. Filter Propagation

The EKF estimates the IMU pose and linear velocity
together with the time-varying IMU biases and the map. The
filter state is the(16 +N)× 1 vector:

x =
[
I q̄T

G
bT

g
GvT

I
bT

a
GpT

I
| d1 · · · dN

]T

=
[
xT

s | xT

d

]T
, (1)

wherexs(t) is the 16 × 1 sensor platform state, andxd(t)
is the N × 1 state of the structural plane map. The first
component of the sensor platform state is,I q̄G(t), which
is the unit quaternion representing the orientation of the
global frame {G} in the IMU frame, {I}, at time t. The
frame {I} is attached to the IMU (see Fig. 1), while{G}
is an inertial reference frame whose origin coincides with
the initial IMU position, and whose orientation is aligned
with the perpendicular structural planes according to the
filter initialization procedure described in Section IV. The
sensor platform state also includes the position and velocity
of {I} in {G}, denoted by the3 × 1 vectors GpI(t) and
GvI(t), respectively. The remaining components are the biases,
bg(t) and ba(t), affecting the gyroscope and accelerometer
measurements, which are modeled as random-walk processes
driven by the zero-mean, white Gaussian noisenwg(t) and
nwa(t), respectively.
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The building map is comprised ofN static planar features
Πi, i = 1, . . . , N , which includes all planes (if any) that are
known from the building blue prints, and grows as new planes
are detected. Each plane is described by its Hessian normal
form componentsdi and Gπi, which are the distance from
the plane to the origin of{G}, and the3 × 1 normal vector
of the plane expressed in{G}, respectively.1 The map state,
xd, consists of the scalar distances,di, i = 1, . . . , N , which
are estimated along with the state of the sensing package. We
only map perpendicular structural planes, hence, we do not
need to estimate each plane’s normal-vector. Instead, we store
them in the map parameter vector

[
GπT

1 . . . GπT

N

]T
, where

each componentGπi is determined once during the new plane
initialization step (see Section III-C) or is available from the
blueprint layout. With the state of the system now defined,
we turn our attention to the continuous-time dynamical model
which governs the state of the system.

1) Continuous-time model:The system model describing
the time evolution of the state is (see Lefferts et al. (1982);
Trawny and Roumeliotis (2005)):

I ˙̄qG(t) =
1

2
Ω(ω(t))I q̄G(t) (2)

GṗI(t) = GvI(t) , Gv̇I(t) =
Ga(t) (3)

ḃg(t) = nwg(t) , ḃa(t) = nwa(t) (4)

ḋi(t) = 0 , i = 1, . . . , N. (5)

In these expressions,ω(t) = [ω1(t) ω2(t) ω3(t)]
T is the

rotational velocity of the IMU, expressed in{I}, Ga is the
IMU acceleration expressed in{G}, and

Ω(ω) =

[
−⌊ω×⌋ ω

−ωT 0

]
, ⌊ω×⌋ ,




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 .

The gyroscope and accelerometer measurements,ωm andam,
used for state propagation, are

ωm(t) = ω(t) + bg(t) + ng(t) (6)

am(t) = C(I q̄G(t)) (
Ga(t)− Gg) + ba(t) + na(t), (7)

whereng andna are zero-mean, white Gaussian noise pro-
cesses, andGg is the gravitational acceleration. The matrix
C(q̄) is the rotation matrix corresponding tōq. Also note that
the distances to the building planes are fixed with respect to
{G}, thus their time derivatives are zero [see (5)].

Linearizing at the current estimates and applying the ex-
pectation operator on both sides of (2)-(5), we obtain the state
estimate propagation model

I ˙̄̂qG(t) =
1

2
Ω(ω̂(t))I ˆ̄qG(t) (8)

G ˙̂pI(t) =
Gv̂I(t) ,

G ˙̂vI(t) = CT (I ˆ̄qG(t)) â(t) +
Gg (9)

˙̂
bg(t) = 03×1 ,

˙̂
ba(t) = 03×1 (10)

˙̂
di (t) = 0 , i = 1, . . . , N, (11)

with â(t)=am(t)−b̂a(t), andω̂(t)=ωm(t)−b̂g(t).

1A point Gp lies on planeΠi if GπT
i

Gp− di = 0.

The (15 +N)× 1 error-state vector is defined as

x̃ =
[

IδθT

G
b̃T

g
GṽT

I
b̃T

a
Gp̃T

I
| d̃1 · · · d̃N

]T

=
[
x̃T

s | x̃T

d

]T
, (12)

where x̃s(t) is the 15 × 1 error state corresponding to the
sensing platform, and̃xd(t) is the N × 1 error state of the
map. For the IMU position, velocity, biases, and the map, an
additive error model is utilized (i.e.,̃x = x− x̂ is the error in
the estimatêx of a quantityx). However, for the quaternion
we employ a multiplicative error model. Specifically, the error
between the quaternion̄q and its estimatê̄q is the3×1 angle-
error vector,δθ, implicitly defined by theerror quaternion

δq̄ = q̄ ⊗ ˆ̄q−1 ≃
[
1
2δθ

T 1
]T

, (13)

whereδq̄ describes the small rotation that causes the true and
estimated attitude to coincide. The main advantage of this
error definition is that it allows us to represent the attitude
uncertainty by the3× 3 covariance matrixE{δθδθT}. Since
the attitude corresponds to three d.o.f., this is a minimal
representation.

The linearized continuous-time error-state equation is

˙̃x =

[
Fs,c 015×N

0N×15 IN

]
x̃+

[
Gs,c

0N×15

]
n

= Fc x̃+Gc n , (14)

where IN denotes theN × N identity matrix, Fs,c is the
continuous-time error-state transition matrix corresponding to
the sensor platform state, andGs,c is the continuous time input
noise matrix, i.e.,

Fs,c=




−⌊ω̂×⌋ −I3 03 03 03

03 03 03 03 03

−CT (I ˆ̄qG)⌊â×⌋ 03 03 −CT (I ˆ̄qG) 03

03 03 03 03 03

03 03 I3 03 03




Gs,c =




−I3 03 03 03

03 I3 03 03

03 03 −CT (I ˆ̄qG) 03

03 03 03 I3
03 03 03 03



, n =




ng

nwg

na

nwa


 ,

where03 is the3 × 3 matrix of zeros. The system noise co-
variance matrixQc depends on the IMU noise characteristics
and is computed off-line (Trawny and Roumeliotis 2005).

2) Discrete-time implementation:The IMU signalsωm and
am are sampled at a constant rate1/T , whereT , tk+1 − tk.
Every time a new IMU measurement is received, the state
estimate is propagated using 4th-order Runge-Kutta numerical
integration of (8)–(11). In order to derive the discrete-time
covariance propagation equation, we evaluate the discrete-time
state transition matrix

Φk = Φ(tk+1, tk) = exp

(∫ tk+1

tk

Fc(τ)dτ

)
(15)

and the discrete-time system noise covariance matrix

Qd,k =

∫ tk+1

tk

Φ(tk+1, τ)GcQcG
T

cΦ
T (tk+1, τ)dτ. (16)
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The propagated covariance is then computed as

Pk+1|k = ΦkPk|kΦ
T

k +Qd,k. (17)

After processing the IMU measurements to propagate the
filter state and covariance, we process any available laser scan
measurements in the filter update step (see Section III-B).

B. Landmark Update

As the IMU-laser platform moves in an indoor environment,
the laser-scan plane intersects the perpendicular structural
planes of the building. These measurements are exploited
to update the state estimate. To simplify the discussion, we
consider a single line measurement,Lℓ⊥, corresponding to
the intersection of the laser-scan plane and map plane,Πi

(see Fig. 1). The line is described in the laser frame,{L},
by (ρ, φ), whereρ is the distance from the origin of{L} to
the line, andφ is the angle of the vectorLℓ perpendicular to
the line.2 We will hereafter express the line direction in{I},
as Iℓ⊥ = C(I q̄L)

[
sinφ −cosφ 0

]T
, whereI q̄L is the unit

quaternion representing the orientation of the laser framein the
IMU frame (see Sect. VI). In what follows, we describe how
each line is exploited to define twomeasurement constraints,
which are used by the EKF to update the state estimates.

1) Orientation Constraint:The first constraint is on the
orientation of{I} with respect to{G}. The normal to the plane
Πi, vectorGπi, is perpendicular toCT(I q̄G)

Iℓ⊥ (see Fig. 1),
which yields the followingorientation measurement constraint

z1 = GπT

i C
T(I q̄G)

Iℓ⊥ = 0 . (18)

The expected measurement is

ẑ1 = GπT

i CT(I ˆ̄qG)
Iℓ⊥m , (19)

where Iℓ⊥m = C(I q̄L)
[
sinφm − cosφm 0

]T
is the mea-

suredline direction withφm = φ− φ̃. The measurement resid-
ual is r1 = z1 − ẑ1 = −ẑ1 and the corresponding linearized
error model is

z̃1 ≃
[
−GπT

i C
T (I ˆ̄qG)⌊

Iℓ⊥m×⌋ 01×12

]
x̃s

+
[
01×N

]
x̃d +

[
GπT

i C
T (I ˆ̄qG)

Iℓm 0
] [φ̃

ρ̃

]

= hT

1,s x̃s + hT

1,d x̃d + γT

1 nℓ, (20)

where Iℓm = C(I q̄L)
[
cosφm sinφm 0

]T
is the perpen-

dicular to the measured line direction andρm = ρ− ρ̃ is the
measured distance to the line. The vectorshT

1,s, h
T

1,d, andγT

1

are the Jacobians of (18) with respect to the state and line
parameters, respectively. The2×1 error vectornℓ is assumed
to be zero-mean, white Gaussian, with covariance matrix
R = E{nℓn

T

ℓ } computed for each line from the weighted line-
fitting procedure (Pfister et al. 2003).

2) Distance Constraint:From Fig. 1, the following geo-
metric relationship holds:

GpI +CT(I q̄G) (
IpL + ρ Iℓ) = di

Gπi +
Gt, (21)

2We utilized the Split-and-Merge algorithm (Nguyen et al. 2007) to segment
the laser-scan data and a weighted line-fitting algorithm (Pfister et al. 2003)
to estimate the line parameters(ρ, φ) for each line.

where Iℓ = C(I q̄L)
[
cosφ sinφ 0

]T
is the perpendicular

to the line direction, andIpL is the position of the laser
scanner in the IMU frame. Since the vectorGt is unknown and
cannot be measured we need to eliminate it from the equation.
We do so by projecting (21) ontoGπT

i , yielding thedistance
measurement constraint

z2 = GπT

i (GpI +CT (I q̄G) (
IpL + ρ Iℓ))− di = 0. (22)

The expected measurement is

ẑ2 =
GπT

i

(
Gp̂I +CT(I ˆ̄qG) (

IpL + ρm
Iℓm)

)
− d̂i. (23)

The measurement residual isr2 = z2 − ẑ2 = −ẑ2 and the
corresponding linearized error model is

z̃2 ≃
[
−GπT

i C
T
(
I ˆ̄qG

)
⌊IpL + ρm

Iℓm×⌋ 01×9
GπT

i

]
x̃s

+
[
01×(i−1) −1 01×(N−i)

]
x̃d

+
[
−GπT

i C
T
(
I ˆ̄qG

)
ρm

Iℓ⊥m
GπT

i C
T
(
I ˆ̄qG

)
Iℓm

] [φ̃
ρ̃

]

= hT

2,s x̃s + hT

2,d x̃d + γT

2 nℓ, (24)

where the vectorshT

2,s, h
T

2,d, andγT

2 are the Jacobians of (22)
with respect to the state and line parameters, respectively.

We process the two measurement constraints together;
stacking (20) and (24), we obtain the measurement Jacobians

H =

[
hT

1,s hT

1,d

hT

2,s hT

2,d

]
, Γ =

[
γT
1

γT
2

]
, (25)

which are used in the expression for the Kalman gain

K = Pk+1|kH
T
(
HPk+1|kH

T + ΓRΓT
)−1

. (26)

The residual vector isr =
[
r1 r2

]T
, and the state and the

covariance update equations are

x̂k+1|k+1 = x̂k+1|k +Kr

Pk+1|k+1= (I−KH)Pk+1|k(I−KH)T +KΓRΓTKT .

After updating the state and covariance with measurements
to planes currently in the map, we may have additional
measurements to process corresponding to planes that have
not been observed previously. In Section III-C we describe
how to augment the map with an initial estimate of each new
feature.

C. Landmark Initialization

There are three cases which we distinguish for plane initial-
ization. The first is planes which are known perfectlya priori
(e.g., from “as-built” building blueprints). The second class
are planes which are approximately known (e.g., extracted
from imprecise building blueprints, or “as-designed”). The
third type are the unknown planes that occur in the principal
building directions (i.e., the floor, ceiling, and orthogonal
building walls). While we do not know the location or number
of these planes, whenever we observe them, we know they
exhibit one of the three known principle orientations, and only
the distance to the plane must be estimated.

1) Perfectly known planes:Perfectly known planes are
straight forward to exploit in our navigation framework since
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all three d.o.f. of the plane parameters are knowna priori.
We could include each plane in the state vector with an
associated zero-covariance and zero-correlation to the rest
of the state. However, in practice we simply maintain an
additional parameter vector of known planes, which reduces
the computational cost of the filter by limiting the state size
even further. When observing a perfectly known plane, we
follow the procedure in Sect. III-B to update the state, with
the caveat that the Jacobians taken with respect to the known
plane parameters are set identically to zero [see (20) and (24)].

2) Approximately known planes:Planes which are known
approximately are the most common to arise in typical im-
plementations when a blueprint of the building is available.
This occurs because for practical reasons during building
construction, walls are not always placed precisely where they
were designated and building tolerances permit some room for
error. In these instances, we include an initial estimate ofeach
building plane in the map, and we set the covariance for each
plane according to the accuracy of the blueprints. In practice,
if the quality of the blueprints is unknown, it suffices to hand-
measure a small number of the building planes in order to
characterize the blueprint accuracy. We assume that the errors
in the initial estimates of the approximately known planes are
uncorrelated with each other and the sensor platform state,and
set the corresponding cross-correlation entries inP to zero.

3) Unknown planes:When measuring a new plane,ΠN+1,
we first determine if the plane’s orientation,GπN+1, corre-
sponds to one of the three cardinal directions,ej , j = 1, 2, 3,
considered in the map. We employ a Mahalanobis distance
test to measure the probability of correspondence between
the plane’s orientation and each of the cardinal directions
in the map. Specifically, we compute the orientation residual
r1,j = −eT

j C
T
(
I ˆ̄qG

)
Iℓ⊥m, j = 1, 2, 3, and the covariance of

the residual

sj =
[
hT

1,s hT

1,d

]
Pk+1|k

[
h1,s

h1,d

]
+ σ2

φγ
T

1γ1, (27)

whereh1,s andγ1 are the measurement Jacobians defined in
(20) evaluated atGπi = ej, andσ2

φ is the (1, 1) element of
R. If the smallest Mahalanobis distance

µ2
jmin = min

j

r21,j
sj

(28)

is less than a probabilistic threshold, then a new landmark
is initialized with normal vectorGπN+1 = ejmin. After
determining the new plane’s orientation, we compute the
distance to the new plane by solving (23) ford̂N+1, i.e.,

d̂N+1=
GπT

N+1

(
Gp̂I+CT(I ˆ̄qG) (

IpL+ρm
Iℓm)

)
(29)

and augment the state vector asx̂aug ,
[
x̂T | d̂N+1

]T
.

Next, we need to augment the filter’s covariance, which
requires first partitioning the prior covariance into

Pk+1|k =

[
Pss Psd

Pds Pdd

]
, (30)

wherePss is the15×15 sensor error-state covariance,Pdd is
theN×N map error-state covariance, andPsd = PT

ds are the
15 × N cross-correlation components. We then compute the

scalar variance of the new plane,Pd′d′ , and the correlation
between the new plane and the current state,Pd′x, as:

Pd′d′ = hT

2,sPssh2,s + γT

2Rγ2 (31)

Pd′x = PT

xd′ =
[
hT

2,sPss hT

2,sPsd

]
(32)

whereh2,s andγ2 are defined in (24). Lastly, the augmented
covariance,Paug, is computed as:

Paug =

[
Pk+1|k Pxd′

Pd′x Pd′d′

]
. (33)

After performing state and covariance augmentation duringthe
landmark initialization step, we return to the propagationstep
and process the next IMU measurement (see Section III-A).

D. Zero-Velocity Update

When the laser scanner does not detect any structural
planes along certain directions for an extended period of
time, the pose estimates accumulate errors due to drifts in the
accelerometer and gyroscope biases. In addition, build up of
orientation errors can cause the filter to incorrectly integrate a
portion of the gravitational acceleration. This effect is closely
related to the system’s observability (see Section V) and can be
compensated by means of drift correction during instantaneous
stationary periods of the motion (e.g., when a shoe-mounted
IMU is stationary during the stance phase while walking,
see Sagawa et al. (2000)).

This procedure, termed azero-velocity update, is chal-
lenging for two reasons: (i) the stationary periods must be
identified without anexternal reference, and (ii) the IMU drift
error must be corrected while properly accounting for the
state uncertainty and IMU noise. Existing methods typically
detect stationary periods based on a threshold check for the
accelerometer measurement. These require significant hand
tuning, and cannot account for the uncertainty in the current
state estimate.

In contrast, we formulate the zero-velocity constraint as
an EKF measurement and use the Mahalanobis distance test
to identify the stationary intervals. Specifically, for thezero-
velocity update, we employ the following measurement con-
straints for the linear acceleration, and linear and rotational
velocities which are (instantaneously) equal to zero

zζ =
[
aT ωT GvT

I

]T
= 09×1. (34)

The zero-velocity measurement residual is

rζ = zζ − ẑζ =



am − b̂a +C

(
I ˆ̄qG

)
Gg

ωm − b̂g

−Gv̂I


 (35)

and the corresponding linearized error model is

z̃ζ≃




−⌊C
(
I ˆ̄qG

)
Gg×⌋ 03×3 03×3 I3 03×3

03×3 I3 03×3 03×3 03×3

03×3 03×3 I3 03×3 03×3


x̃+




na

ng

nv




= Hζ x̃+ nζ , (36)

whereHζ is the Jacobian of the zero-velocity measurement
with respect to the state, andnv is a zero-mean, white
Gaussian process noise that acts as a regularization term



7

for computing the inverse of the measurement residuals’
covariance. Based on this update model, at time stepk we
compute the Mahalanobis distanceχ2 = rTζ S

−1
k rζ , where

Sk = HζPk|kH
T
ζ +Rζ is the covariance of the measurement

residual andRζ = E{nζn
T
ζ } is the measurement noise

covariance. Ifχ2 is less than a chosen probabilistic threshold,
a stationary interval is detected and the state vector and the
covariance matrix are updated using (34)-(36). We note that
once we use the inertial measurements for an update, we
cannot use them for propagation. However, this is not an
issue, since the IMU is static and we do not need to use
the kinematic model (2)-(5) to propagate the state estimates.
Instead we employ the following equations:

I ˙̄qG(t) = 04×1 , GṗI(t) = 03×1 , Gv̇I(t) = 03×1

ḃg(t) = nwg(t) , ḃa(t) = nwa(t).

In essence, this static-IMU propagation model indicates that
the state vector and the covariance matrix of all components
are kept constant. The only exceptions are the covariances of
the errors in the gyroscope and accelerometer bias estimates
which increase at each time step to reflect the effect of the
random walk model.

IV. F ILTER STATE INITIALIZATION

Before using the EKF to fuse measurements from the laser
scanner and the IMU, we need to initialize the state vector
estimatêx0|0 along with its covarianceP0|0. This is performed
in three sequential stages: (i) the gyroscopes’ biases,bg, are
initialized using thepartial zero-velocity updates (Section IV-
A), (ii) the IMU orientation,I q̄G, is initialized employing the
laser scans (Section IV-B), and (iii) the accelerometers’ biases,
ba, are initialized using zero-velocity updates (Section IV-
C). Once these three stages are completed, we initialize the
position of the sensing platform,GpI . However, we note
that if there are no structural planes in the building map
initially known (i.e., if no blue print was provided), we can
arbitrarily select the origin of the global frame. Thus, forour
convenience, we set the origin of the global frame to coincide
with the origin of the initial IMU frame, i.e.,GpI = 03×1.
The initial covariance forGp̃I is set to zero accordingly.

A. Gyroscopes’ Biases Initialization

Thecompletezero-velocity update described in Section III-
D cannot be directly applied to initialize the gyroscope biases.
This is due to the fact that an estimate of the orientationI q̄G,
required for evaluatingHζ [see (36)], cannot be obtained be-
fore estimating the gyroscope biases (Section IV-B.2). Instead,
to provide an initial estimate for the gyroscope biases,bg, we
usepartial zero-velocity updates. In particular, we initially set
b̂g to an arbitrary value (e.g., zero), while its covariance is set
to a large value, reflecting the lack ofa priori knowledge about
the estimates. Then, we keep the IMU static (i.e.,ω = 03×1)
and use the second block row of (34)-(36) to perform a partial
zero-velocity update. This process is equivalent to averaging
the (static) gyroscope measurements to compute an initial
estimate of the bias.

B. Orientation Initialization

Since the IMU and the laser scanner are rigidly connected
and their relative transformation is known (see Section VI), the
initial orientation of the IMU can be directly computed from
the initial orientation of the laser scanner. We describe two
methods to compute the orientation of the laser scanner using
line measurements of three planes with linearly-independent
normal vectors. The first method, adapted from Chen (1991),
requires observation of all three planes from the same view-
point, while the second method is capable of using laser scan
measurements taken from different perspectives by exploiting
the motion information from the gyroscopes.

1) Concurrent observation of three planes:When three
non-parallel planes are scanned from the same viewpoint (i.e.,
the same frame of reference), the estimate of the orientation
I q̄G is initialized using the method of Chen (1991). In this case,
three quadratic constraints in terms of the unit quaternionI q̄G

are obtained from the laser scans [see (18)], each of them
describing the relationship between a line measurement and
the corresponding plane:

z1,i =
GπT

i C
T(I q̄G)

Iℓ⊥i = 0, i = 1, . . . , 3. (37)

Chen’s algorithm algebraically manipulates the rotation ma-
trix to convert this system of equations to an eighth-order
univariate polynomial in one of the d.o.f. of the unknown
rotation. Eight solutions for this univariate polynomial are
obtained, for example, using the Companion matrix (Cox
et al. 2004). The remaining 2 d.o.f. of the rotation,I q̄G, are
subsequently determined by back-substitution. In general, an
external reference is required to identify the true solution
from the eight possibilities. In our work, we employ the
gravity measurement from the accelerometers and the planes’
identities to find the unique solution.

2) Motion-aided orientation initialization:In order to use
Chen’s method for initializing the orientation, all three line
measurements must be expressed with respect to the same
frame of reference; hence three non-parallel planes must be
concurrently observed by the laser scanner from the same
viewpoint. However, satisfying this prerequisite is quitelimit-
ing since it requires facing a corner of a room, for example,
where three structural planes intersect. In this work, we
address this issue by using the gyroscope measurements to
transform the laser scans, taken from different viewpoints at
different time instants, to acommon frame of reference. We
choose as the common frame, the IMU frame when the first
laser scan is recorded (i.e., at timet1), and denote it by
{I1}. In this way, we can rewrite the inferred measurement
constraints (18) at timetj , j = 2, 3 as

GπT

j C
T (I q̄G(tj))

Iℓ⊥j (tj) =
GπT

j C
T (I q̄G(t1))

I1ℓ⊥j (tj) = 0
(38)

where I1ℓ⊥j (tj) = C(I1 q̄Ij
)Iℓ⊥j (tj) is the line direction

corresponding to the planeΠj , recorded at timetj , and
transformed to the frame{I1}. Since the gyroscope biases
are already initialized, the quaternionsI1 q̄Ij

can be obtained
by integrating the rotational velocity measurements [see (8)
and (6)] between time instantst1 and tj . Once all the line
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directions, Iℓ⊥j (tj), are expressed with respect to{I1}, we
employ Chen’s algorithm, described before, to find the initial
orientation,I q̄G(t1).

The covariance of the initial orientation estimate is obtained
by computing the corresponding Jacobians [by linearizing
(38)] and using the uncertainty (covariance) in the estimates of
Iℓ⊥j andI1 q̄Ij

. However, note that the estimates of the relative
transformationsI1 q̄I2

and I1 q̄I3
are correlated. To account for

these correlations, we employ thestochastic cloningtechnique
(Mourikis et al. 2007) to augment the state vector and the
covariance matrix of the EKF withI1 q̄Ij

at timetj (assuming
we have started integrating from timet1). In this way, we
are able to estimate the IMU orientation by integrating the
gyroscope measurements, and concurrently compute the cor-
relations between the IMU orientation estimates at the time
instants when laser scans are recorded.

C. Accelerometers’ Biases Initialization

In this step, similar to the gyroscope bias initialization,
we set the estimate for the accelerometer biases,ba, to
an arbitrary value (e.g., zero), and set its covariance to a
sufficiently large value, representing our uncertainty about the
arbitrary initial estimate. Since the IMU is initially static, we
set the velocity estimate,GvI , and its covariance to zero.
Then, keeping the IMU static, we utilize thecompletezero-
velocity update described in Section III-D to initialize the
accelerometer biases.

V. OBSERVABILITY ANALYSIS

A key task when designing any estimator is to study
the observability properties of the underlying system, to de-
termine if the available measurements will provide enough
information to estimate the state. In this section, we prove
that the presented system for IMU-laser scanner localization
is observable when three known planes (i.e., available from
the “as-built” or “as-designed” blueprints), whose normal
vectors are linearly independent, are concurrently observed
by the laser scanner. Under this condition, which is fulfilled
in most practical scenarios (e.g., if the scan plane intersects
two walls and the floor), we can employ the pose estimation
method described in Section IV to estimate(GpI ,

I q̄G). For
the purpose of observability analysis, we introduce two new
inferred measurementsh∗

1 andh∗
2 that replace the laser scan

measurements (18), (22):

I q̄G = h∗
1(x) = ξ1(

Iℓ1,
Iℓ2,

Iℓ3) (39)
GpI = h∗

2(x) = ξ2(
Iℓ1,

Iℓ2,
Iℓ3). (40)

The two functionsξ1 and ξ2 in (39) and (40) do not need
to be known explicitly; only their functional relation withthe
random variables,I q̄G andGpI , is required for the observabil-
ity analysis. Our approach uses the Lie derivatives (Hermann
and Krener 1977) of the above inferred measurements (39)
and (40) for the system in (2)-(5), to show that the corre-
sponding observability matrix is full rank. For this purpose,
we first rearrange the nonlinear kinematic equations (2)-(5) in
a suitable form for computing the Lie derivatives:




I ˙̄qG

ḃg
Gv̇I

ḃa
GṗI




=




− 1
2Ξ(I q̄G)bg

03×1
Gg−CT(I q̄G)ba

03×1
GvI




︸ ︷︷ ︸
f0

+




1
2Ξ(I q̄G)
03×3

03×3

03×3

03×3




︸ ︷︷ ︸
f1

ωm+




04×3

03×3

CT (I q̄G)
03×3

03×3




︸ ︷︷ ︸
f2

am ,

(41)

whereωm andam are considered the control inputs, and

Ξ(q̄) ,

[
q4I3 + ⌊q×⌋

−qT

]
with q̄ =

[
q

q4

]
. (42)

Note also thatf0 is a 16×1 vector, whilef1 andf2 are matrices
of dimensions 16×3.

In order to prove that the system is locally weakly ob-
servable, it suffices to show that the observability matrix,
whose rows comprise the gradients of the Lie derivatives
of the measurementsh∗

1 and h∗
2 with respect to f0, f1,

and f2 [see (41)], is full rank (Hermann and Krener 1977).
Since the measurement and kinematic equations describing
the IMU-laser scanner localization are infinitely smooth, the
observability matrix has an infinite number of rows. However,
to prove it is full rank, it suffices to show that a subset of its
rows are linearly independent. The following matrix contains
one such subset of rows whose linear independence can be
easily shown using block Gaussian elimination (Mirzaei and
Roumeliotis 2009):



∇L
0
f0
h∗
1

∇L
0
f0
h∗
2

∇L
1
f0
h∗
1

∇L
1
f0
h∗
2

∇L
2
f0
h∗
2



=




I4 04×3 04×3 04×3 04×3

03×4 03×3 03×3 03×3 I3
X1 − 1

2Ξ(I q̄G) 04×3 04×3 04×3

03×4 03×3 I3 03×3 03×3

X2 03×3 03×3 CT (I q̄G) 03×3



.

In this matrix,Li
f0
h∗
j (x) denotes thei-th order Lie derivative

of h∗
j (x) with respect tof0. The matricesX1 andX2 have

dimensions4× 4 and3× 4, respectively, and do not need to
be computed explicitly since they will be eliminated by the
block element(1, 1) of the matrix, i.e., the identity matrix
I4. SinceΞ(q̄) and C(q̄) are always full rank for any unit
quaternionq̄ (Mirzaei and Roumeliotis 2009), all the rows of
the above matrix are linearly independent. Hence, we conclude
the observability analysis with the following lemma:

Lemma 1:Given line measurements corresponding to three
known planes with linearly independent normal vectors, the
system describing the IMU-laser scanner localization is locally
weakly observable.
Simply put, as long as the laser scanner measures the walls,
as well as the floor or ceiling, the filter should be able to
maintain an accurate estimate the pose of the person. As
the person moves through the environment, the laser scanner
measures different planes over time, leading to higher accuracy
estimates. When the sensing platform stops moving, we can
apply zero velocity updates (see Section III-D), to reduce drift.

VI. IMU-L ASER SCANNER EXTRINSIC CALIBRATION

The laser scan measurements must be transformed to the
IMU frame before an EKF update can be performed. In
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particular, in the orientation constraint (18), the measured line
direction Lℓ⊥ that is registered in the laser scan frame, is
expressed with respect to the IMU frame,{I}. Similarly, in
the distance constraint (22), the perpendicular vector to the
line direction,Lℓ, is first transformed to the IMU frame. To
perform these transformations, we need to know(I q̄L,

IpL),
i.e., the rotation and translation between the IMU frame and
the laser frame. If the transformation between the IMU and
the laser scanner is not precisely known, the constraints (18)
and (22) will not hold, and updating the filter based on them
can result in inconsistency and divergence of the estimator.

Some methods exist in the literature for extrinsic laser
scanner calibration (e.g., Skaloud and Lichti (2006); Rieger
et al. (2010)), however, these have primarily focused on
recovering the relative orientation of the sensor (i.e., roll,
pitch, and yaw angles), and utilize GPS as an additional aid
in the calibration process. In contrast, we seek to compute the
frame transformation between the laser and IMU using only
the sensors’ own motion and measurements to planes in the
environment.

To address this issue, we have employed a method similar
to our previous work for IMU-camera calibration (Mirzaei and
Roumeliotis 2008) to calibrate the transformation betweenthe
IMU and the laser scanner. For this purpose, we have included
(Iq

L
, IpL) in the state vector of the EKF, i.e.,

xaug =
[
I q̄T

G
bT

g
GvT

I
bT

a
GpT

I
| I q̄T

L

IpT

L
| d1 · · · dN

]T

=
[
xT

s | xT

c | xT

d

]T
. (43)

We augment the system equations (2)-(5) with

I ˙̄qT

L
= 0 , IṗT

L
= 0 (44)

which specify that the IMU-laser transformation is rigid and
does not change with time. We also extend (20) and (24) to
include the corresponding Jacobians with respect to theIpL

andI q̄L, respectively. We do so by first writing the orientation
and distance constraints explicitly in terms of the laser-to-IMU
transformation parameters(I q̄L,

IpL), i.e.,

z1 = GπT

i CT(I q̄G)C(I q̄L)
Lℓ⊥ = 0 (45)

z2 = GπT

i (GpI +CT (I q̄G) (
IpL + ρ C(I q̄L)

Lℓ))− di = 0.
(46)

The linearized error models for (45) and (46) are

z̃1 ≃ hT

1,s x̃s + hT

1,d x̃d + γT

1 nℓ

+
[
GπT

i C
T
(
I ˆ̄qG

)
⌊C

(
I ˆ̄qL

)
Lℓ⊥m×⌋ 01×3

]
x̃c

= hT

1,s x̃s + hT

1,c x̃c + hT

1,d x̃d + γT

1 nℓ, (47)

z̃2 ≃ hT

2,s x̃s + hT

2,d x̃d + γT

2 nℓ

+
[
GπT

i C
T
(
I ˆ̄qG

)
⌊C

(
I ˆ̄qL

)
ρLℓm×⌋ GπT

i C
T
(
I ˆ̄qG

)]
x̃c

= hT

2,s x̃s + hT

2,c x̃c + hT

2,d x̃d + γT

2 nℓ, (48)

where the calibration error-state is̃xc =
[

IδθL
Ip̃T

L

]T
,

the Jacobians with respect to the state and line parameters,
hT

i,s, hT

i,d, γT

i , i = 1, 2, are defined in (20) and (24), and
the Jacobians with respect to the calibration parameters,hT

i,c,
i = 1, 2 are implicitly defined in (47) and (48).

The key idea for IMU-laser calibration is to estimate the

augmented statexaug while in a known or unknown environ-
ment with at least three perpendicular walls. Note that since
there is not enough information to estimate the calibration
from a single viewpoint, we must employ a “motion-induced”
calibration strategy. In particular, based on a Lie derivative
analysis of the system observability properties (see Section V,
Mirzaei and Roumeliotis (2008, 2009)), we have shown that
the IMU-laser calibration parameters are observable when at
least two rotations are performed about different axes, butwe
omit the details here for brevity. We move the sensor package
and collect data until a satisfactory level of accuracy for the
calibration parameters (based on the3σ bounds computed
from the estimated covariance matrix) has been achieved.
The results of our on-line calibration process, obtained while
exploring an unknown area, are presented in Section VII-C.

VII. E XPERIMENTAL RESULTS

Our proposed IMU-laser localization and mapping algo-
rithm was evaluated with a sensing package comprised of a
solid-state ISIS IMU operating at 100 Hz and a SICK LMS200
laser scanner operating at 10 Hz, mounted on a navigation
box to log data. These sensors were interfaced to a laptop via
RS-232 which recorded the time-stamped measurements. The
data-logging software was implemented in C++, whereas the
EKF was written in MATLAB.

A. Navigation in a known environment

During the first experiment we tested the navigation al-
gorithm in a known environment along a trajectory loop of
120 m in length3. The motion profile of the sensor platform
contained instantaneous stationary time periods to allow for
zero-velocity updates. These updates cause small reductions
in the position estimates’ covariance [see Fig. 5(a)]. Larger
reductions in the covariance take place whenever the laser
scanner detects three planes whose normal vectors are linearly
independent (e.g., two perpendicular walls and the ceiling)
within a short period of time; an event that typically oc-
curs at hallway intersections (e.g.,t=49 sec). Thea priori
known map, available from the building blueprints, contained
9 walls and the ceiling. Employing this map, nearly12, 000
measurement updates were performed during the8.5 minute
trial. The combination of the laser measurements and zero-
velocity updates allowed the filter to maintain a precise pose
estimate of the sensor platform. Specifically, the maximum
uncertainty in the position estimates was9.16 cm (1σ),
while the maximum uncertainty in the attitude estimates was
0.1 deg (1σ) [see Fig. 5(a) and Fig. 5(b)]. The final position
uncertainty was

[
27.5 1.2 1.3

]
cm (3σ). Note that thex-

direction uncertainty is larger in the final corridor, sinceno
planes are observed that provide information along thex-axis.

B. Navigation in a previously unknown environment

We conducted a second experiment in a previously unknown
indoor environment, along a closed-loop path of approximately
270 m in length (see Fig. 4(a) and Fig. 4(b)). The 3D

3Video available athttp://mars.cs.umn.edu/videos/IMU-Laser.m4v
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Fig. 2. (a) 3D view of the estimated trajectory. The sensing package was initially placed on the ground for the purpose of IMU-bias initialization, and
subsequently picked up and carried in a clock-wise loop of 120 m in length through the building hallways. (b) Top-view of the estimated 3D trajectory during
an 8.5 min experiment. The red circle indicates the starting position (on the floor), and the dashed red lines indicate the wallswhich were included in the
building map.
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Fig. 3. (a) The trace of the position covariance. During the run, the maximum uncertainty along any axis was9.16 cm. (1σ). (b) The trace of the attitude
covariance. During the run, the maximum uncertainty about any axis was0.1 deg. (1σ).

trajectory covered two floors of Akerman Hall at the University
of Minnesota, which included traversing two stairways and
a ramp. The environment contained a multitude of clutter
(e.g., trash cans, open and closed doors, storage boxes, and
furniture), as well as normal pedestrian traffic flow. Despite
the large amount of non-planar objects observed by the laser
scanner, our localization aid accurately captured the 3D layout
of the building, which in turn enabled precise localization.

During the experiment, as in the known map case, the
motion profile of the sensor platform contained instantaneous
stationary time periods to allow for zero-velocity updates.
These updates caused small reductions in the position esti-
mates’ covariance [see Fig. 5(a)]. Larger reductions in theco-

variance occurred whenever an estimated structural plane was
re-detected (e.g.,t = 555 sec,x-axis update). The trajectory
was accurately tracked, with an average position uncertainty of
3.18 cm (1σ), and an average attitude uncertainty of0.02 deg
(1σ) [see Figs. 5(a), 5(b)]. The final position uncertainty after
loop closure was

[
2.29 6.84 0.43

]
cm (1σ). In addition

to tracking the six d.o.f. pose of the person, a map was
constructed which contained16 walls and the ceilings of both
building levels (see Figs. 4(a) and 4(b)). The uncertainty of the
least accurately estimated distance to a wall was4.57 cm (1σ),
whereas the average uncertainty for all planes was1.51 cm
(1σ). The quality of the map and trajectory estimates is due to
more than19, 000 measurement updates that were performed
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Fig. 4. (a) As the person walks with the sensing package, the filter estimates their 3D trajectory as well as a 3D representation of the unknown environment
comprised of planar features. A side-view of the estimated 270 m trajectory is shown, which covers two floors of the building. The estimated walls on the
first and second floors are depicted, but the estimated ceiling and floor planes have been omitted for clarity of presentation. (b) A top-view of the estimated
3D trajectory during the13 min experiment. The total length of the trajectory is270 m. The trajectory starts on the first floor (bottom figure), climbs up the
disability ramp and the front stairs (picture A), and traverses the corridors (picture B) of the second floor clockwise (top figure). Subsequently, it descends
back to the first floor on the second staircase (picture C), andtraverses the first floor (bottom figure) counter clockwise, returning to the origin. Picture D
shows thecurved intersection of the two corridors where no wall was detected. The estimated walls are depicted in blue, and the ceiling and floor have been
omitted for clarity of presentation.
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Fig. 5. (a) The1σ for the x, y, andz axes. During the run, the maximum uncertainty along any axiswas 43.94 cm (1σ), while the average1σ for the
least accurate axis was5.16 cm. (b) The1σ for the roll, pitch, and yaw angles computed from the angle-error covariance. During the run, the maximum
uncertainty about any axis was0.06 deg. (1σ).

during the13 minute trial.

C. Extrinsic laser-to-IMU calibration

We now present the results of our extrinsic laser-to-IMU
calibration process. Following the procedure of Section VI,
we augmented the state vector with the laser-to-IMU transfor-
mation{I q̄L,

IpL}, and concurrently estimated these parame-
ters while navigating in a previously unknown building (see
Section VII-B). We note that calibration can be made more
accurate and converge faster if completed during a separate
initialization phase in an environment with perfectly known

planes; however, our algorithm performs accurately in both
scenarios.

Figures 6(a) and 6(b) depict the results for the position
and orientation estimates, respectively. In order to demonstrate
the consistency of the calibration process, we compute the
error of the estimates with respect to the final estimate, along
with the corresponding3σ bounds. We note that since this
is an experimental trial, it is impossible to know the true
value of the rotation and translation between the laser and
IMU; however, the obtained results match closely with the
best estimates that we could achieve through hand-measured
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Fig. 6. (a) The relative-translation error (computed versus the final estimate) and the corresponding3σ bounds for the laser-to-IMU translation vector. The
final uncertainties were 0.54 cm along x, 0.76 cm along y, and 1.47 cm along z (3σ). The final translation estimate wasIpL = [25.91 −3.13 −13.42]T cm,
which agrees with our best hand-measured estimates. (b) Therelative-orientation error (computed versus the final estimate) and the corresponding3σ bounds
for the laser-to-IMU rotationI q̄L. The final uncertainties were 0.02 deg in roll, 0.11 deg in pitch, and 0.08 deg in yaw (3σ). The final orientation estimate was
177.44 deg in roll, 67.4 deg in pitch, and -2.29 deg in yaw (converted from quaternion to roll-pitch-yaw convention), which agrees with our best hand-measured
estimates.

techniques. The estimated laser-to-camera translation vector
was IpL =

[
25.91 −3.13 −13.42

]
cm, and the estimated

orientation was 177.44 deg in roll, 67.4 deg in pitch, and -2.29
deg in yaw, which we converted from quaternion to roll-pitch-
yaw convention for ease of presentation. The most uncertain
axis for position was 1.47 cm (3σ) along z, while the most
uncertain axis for orientation was 0.11 deg (3σ) about y.

VIII. C ONCLUSIONS ANDFUTURE WORK

This paper presented a novel L-INS, based on a 2D laser
scanner and an IMU, capable of 3D localization and map-
ping in indoor environments. In the proposed method, the
orthogonal structural planes of the building are employed as
landmarks to aid in localization. Since the building layoutmay
be partially or completely unknown, the planes’ parametersare
estimated concurrently with the six d.o.f. pose of the person.
To this end, an EKF is utilized to fuse information from
an IMU and a 2D laser scanner, and estimate the person’s
motion, and the building’s structural planes. We presented
a practical method for filter initialization using line-to-plane
correspondences to initialize the orientation and zero-velocity
updates to initialize the IMU bias estimates. Furthermore,we
studied the observability properties of the system to determine
a sufficient condition on the number and type of measurements
so as to ensure the pose can be estimated. As a final contri-
bution of this paper, we proposed a laser-to-IMU calibration
method which is capable of on-line estimation of the laser-to-
IMU transformation. The validity of the proposed method is
demonstrated in experimental trials in both previously known
and unknown environments, which include challenging 3D
building structures such as staircases, a disability access ramp,
and long corridors. Furthermore, the environments contained
a typical amount of office clutter (e.g., chairs and desks) as
well as pedestrian traffic.

Our future work includes providing an efficient and intuitive
system interface for a visually impaired person. Classification
of the non-planar objects and obstacles by processing the laser
scans is also within our near goals.
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