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Abstract— This paper presents a novel 3D indoor Laser-aided
Inertial Navigation System (L-INS) for the visually impaired.
An Extended Kalman Filter (EKF) fuses information from an
Inertial Measurement Unit (IMU) and a 2D laser scanner, to
concurrently estimate the six degree-of-freedom (d.o.f.position
and orientation (pose) of the sensing package and a 3D map dfe
environment. Rather than constraining the person to purelypla-
nar motion, the IMU measurements are integrated to estimatehe
pose along a general 3D trajectory. To mitigate the accumut&on
of inertial drift errors, the pose estimates are corrected $ing laser
measurements, namely line-to-plane correspondences betan
linear segments in the laser-scan data and structural plaree of
the building. Utilizing orthogonal building planes as map features
results in a human-interpretable layout of the environment and
ensures that the each feature can be efficiently initializecand
estimated. A practical method is presented to initialize tle pose

In the academic community, numerous electronic navigation
systems for GPS-denied environments have been proposed.
However, the majority of the existing algorithms are desigjn
for mobile robots that are limited to move on planar surfaces
(Thrun et al. 2000; locchi and Pellegrini 2007) or require
heavy sensors, such as a 3D laser scanner (Hahnel et at. 2003
Borrmann et al. 2008), that cannot be carried by a human.
Other algorithms, which have relied on visual information
(Kim and Sukkarieh 2007; Mourikis and Roumeliotis 2008),
are sensitive to variable lighting conditions and require-p
cessing resources that are not typically available on ptata
computing devices.

To address these issues, we aim to design a persat@ir

and the IMU biases using observations of known planes and Navigation system that fulfills the following requirements

zero-velocity updates, respectively. In addition to the fter design,
the observability properties of the nonlinear system are stdied

to show under which measurement conditions the 3D pose can

be accurately estimated. Lastly, an approach for utilizingthe
sensors’ measurements to perform on-line calibration of tk
laser-to-IMU transformation is developed, which enables e
highest possible localization accuracy. The proposed L-I8 is
experimentally validated by a person traveling in both known
and unknown 3D environments to demonstrate its reliabilityand
accuracy for indoor localization and mapping.

|. INTRODUCTION

For humans, safe and efficient navigation requires knowl-
edge of the environmental layout, path planning, obstacle®
avoidance, and determining one’s position and orientation

(pose) with respect to the world. For asually-impaired

o The system must accurately track tls&x degree-of-
freedom (d.o.f.) posef the visually impaired person,
allowing them to safely navigate in 2D environment

o The navigation aid should enable the person to walk
through previouslyunknown buildingswithout getting
lost. This requires constructing a map of the explored
area and localizing with respect to it rral-time

o The selected sensors should fobustto environmental

changes, such as lighting conditions, reliable in the pres-

ence of clutter and moving objects, and work within the
computational and memory limitd a portable computing
device.

The navigation aid should beompact, unobtrusivéo

the person, antightweightenough to be carried without

fatigue.

person, these tasks can be exceedingly difficult to acceimpliTo meet these objectives, we are focused on designing an
and there are high risks associated with failure in any @fdoor Laser-aided Inertial Navigation System (L-INS)nggi
them. To address some of these issues, guide dogs and whiténertial Measurement Unit (IMUpnd a2D laser scanner
canes are widely used for the purposes of wayfinding apdsed upon our preliminary results in Hesch et al. (2009,
environment sensing. The former, however, has costlyitrgin 2010). Employing this sensor pair ensures feasibility ohma
requirements, while the latter can only provide cues abofdicturing a light-weight and compact sensor package that ca
one’s immediate surroundings. On the other hand, commege carried by a person, since a wide variety of small IMUs

cially available electronic navigation systems desigradfie

(e.g., Memsense nIMU) and compact-size 2D laser scanners

visually impaired (e.g., Humanware (2010), Sendero (201Qk.g., Hokuyo URG) are commercially available. Additidgal
rely on GPS signals and cannot be utilized indoors, under tigsing a laser scanner instead of a camera provides greater

cover, or next to tall buildings where reception is poor.
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reliability and robustness under poor lighting conditions

The proposed algorithm tracks the six d.o.f. pose of the
person by integrating the IMU measurements (linear acaeler
tion and rotational velocity) using an Extended Kalmanefilt
(EKF). However, without corrections from an exteroceptive
sensor, the IMU measurement noise and bias drift would
cause the pose estimation errors to grow unbounded over
time. To mitigate this issue, we propose to update the pose
estimates by utilizing straight-line features extractexhf the
2D laser scans. In particular, as the person moves, the laser



scanner’s attitude changes which causes its scanning fan&ection VI. Experimental validation of the proposed method
intersect a variety of structural planes of the building.(ithe is provided in Section VII. Lastly, we conclude the paper and
walls, floor, and ceiling). If the structural planes are kmowpresent future research directions in Section VIII.
a priori from a building map, we can use the information
from the line-to-plane measurements in order to update the I
person’s pose estimates (Hesch et al. 2009). Unfortunately
in many cases in practice, a building map is not available Recent work has focused primarily on developing hazard-
in advance. To overcome this challenge, we simultaneouglgtection aids for the visually impaired with the purpose of
construct a building map in order to utilipeeviously unknown detecting and avoiding obstacl@dlrich and Borenstein 2001;
structural planes in the localization process (Hesch @0d10).  Yuan and Manduchi 2005) and describing objects’ size and
We exploit the fact that most indoor structural planes ag®lor (Hub et al. 2004). These systems cannot be directlgf use
orthogonal to each othewhich allows us to fix each plane’sas wayfinding aids without the development of appropriate
orientation the first time it is observed, and only estim#se ialgorithms for localization. In contrast to the above syste
distance to the origin of the global reference frame. navigation aids have been designed that explicitly track a
Constructing the map based on orthogonal planar structupggson’s location and heading direction. Most relevant ef-
has the advantage of keeping the person’s orientation erfefts have primarily addressed GPS-basettioor navigation
bounded (Nguyen et al. 2006) in addition to providing inierewhich cannot be used inside a building (Makino et al. 1996;
robustness to clutter and moving objects. Furthermore, tR@n et al. 2004)indoor navigationis more challenging, since
estimated map directly provideshmman-interpretable layout pose information can only be inferred from ego-motion and
of the building that can simplify the task of wayfindingenvironmental cues. In what follows, we provide a discussio
towards a destination. Moreover, due to the limited numbef several existing indoor navigation systems.
of structural planes in each building, the computationadlo 1) Navigating using ego-motionDead-reckoning systems
of the algorithm remains bounded. This, together with tie lotrack a person’s poseithout any external reference€om-
processing cost of line-segment extraction from the 2Drlas@on approaches are based on foot-mounted accelerome-
scans, ensures the real-time execution of the algorithm oriess (Cavallo et al. 2005). As a person walks, their position
hand-held computer with limited computational and memoig computed by double integration of the acceleration mea-
resources. surements. Unfortunately, the accelerometer bias an@ ianés
We demonstrate the validity and reliability of the proposeititegrated as well, which causes tpesition errorto grow
approach with real-world experiments in both known andnbounded. Even if the rate of position-error increase can
unknown environments. In the first case, we present a lobp reduced with static-period drift corrections (Sagawalet
trajectory of 120 m in length that covers part of one floor c2000; Borenstein et al. 2009), dead-reckoning systemis stil
the Keller Hall at the University of Minnesota. The secontemain unreliable over long time intervals.
test covers multiple levels of Akerman Hall at the Universit 2) Navigating with known references:Unlike dead-
of Minnesota. In this 270 m trajectory, the person traversegckoning approaches that do not employ external refesence
several staircases and a disability access ramp. In additimap-based systems infer position and orientation infaonat
both test environments includes significant clutter (grgsh- from known landmarks or beacons in the environment. For ex-
cans, storage boxes, and furniture), as well as a normal flample, in Kulyukin et al. (2004), a robot is attached at the en
of pedestrian traffic. Despite these challenges, our dlgari of a leash as a substitute for a guide dog, and localizes using
accurately tracks the person’s pose, and correctly estsrnat odometry and a network of Radio Frequency IDentification
map of the building layout. (RFID) tags. Tjan et al. (2005) presented another approach
In order to ensure that the IMU and the laser scannigr which a hand-held camera identifies retro-reflectivetdlgi
measurements provide sufficient information for estingathe  signs. Similar methods also exist based on ultrasound (Ran
person’s pose, we study the observability of the corresipgnd et al. 2004) and infrared (Ertan et al. 1998) beacons. In our
nonlinear system. We also address the more practical nwitteprevious work (Hesch and Roumeliotis 2010), we presented
how to efficiently initialize the filter. Lastly, we providermvel a map-based indoor localization aid for the visually imedir
on-line method for calibrating the laser-to-IMU transfation comprised of a pedometer, a tri-axial gyroscope, and a 28 las
using either previously known or unknown planar featuresganner. We exploited known corners at hallway intersestio
since inaccurate calibration can lead to biased filter eggs1 (computed from the building blueprints) as landmarks for
The remainder of the paper is organized as follows: lIncalization. Unfortunately, all map-based or beacoredas
Section I, we begin with an overview of the related literatu localization methods suffer from common limitations which
Section Il presents the core of our algorithm, which is amclude: (i) time and costassociated with acquiring the map
EKF-based pose estimator. We describe how to efficiently installing the beacons, (ii) the systenwsbility to adapt
initialize the state of the filter in Section IV. In Section Vo spatial layout changes, and (iii) thestriction of use to
we study the observability properties of the map-based Ipreviously mapped areas.
calization system, and show the system is observable undeB) Navigating in unknown environment§he most flex-
mild conditions that are typically fulfilled in practice. Bse- ible navigation aids are those that can exploit environment
qguently, we describe our approach for calibrating the fasesensing to perform Simultaneous Localization and Mapping
to-IMU transformation using line-to-plane correspondenim  (SLAM). The majority of the proposed systems for SLAM

. RELATED WORK



consider either 2D map and sensor motion (Smith et al. 1990; II;
Dissanayake et al. 2001), or restrict the sensor motionaoggl

surfaces and create a 3D map of the surroundings (Thrun et al.

2000; locchi and Pellegrini 2007; Nguyen et al. 2006). These

algorithms are not generally suitable for use on a personal di®mi
navigation system since the motion of a human is not limited {G}
to a planar surface (e.g., when climbing stairs).

There exist several approaches for estimating a 3D map
and the six d.o.f. pose of a robot (3D SLAM) that employ 3D ('Pr,'qr)
point cloud matching techniques [e.g., Iterative CloseshP 7
(ICP)] (Hahnel et al. 2003; Borrmann et al. 2008; Kohlhepp T L /
et al. 2004; Nichter et al. 2004; Cole and Newman 2006). {I}K:’lMU
However, the computational requirements for matching 3D
point clouds are typically prohibitive for real-time imphen-
tation. More importantly, the 3D laser scanners needed for Sensor platform
acquiring the point clouds are too large and heavy for a perso
fo cary, tus making Ihese systers inappropriate for Use i L 2 1 e o T, e e
a personal navigation aid. Alternative methods for perfogn the Hessian normal fo?m componeni’s of the pIanezwith re?t});ettte global
3D SLAM employ cameras to map the environment bas@@me of reference{G}. The shortest vector in the laser scan plane from the
on visual landmarks (Mourikis and Roumeliotis 2008; Kin®rigin tt?ftthi |aST$]f f:?me{fL_}{ to HE_ hai |en3thptar%%fireqtiﬁn% Witﬂ:
and SUKk_a”eh _2007)' The main d_raWbaf:k (_)f Camer?‘_bagéife;ndoi{s jéscriielt?eb;/) thee;ZTgrl%r;raﬁeté;z;;? The’\\/,(\gcto:efs;gemc thz
systems is their sensitivity to variable lighting condii$) intersection ofSs; andIl; to the intersection opL€ andIl,, is €t. The
which restricts their use as navigation aids for the viguallMU-laser transformation is denoted yp.,'qr.), while the IMU pose with
: . PRITTIR . respect to{ G} is (°pr,qr).
impaired where reliability is of paramount importance. Add
tionally, processing images and extracting visual featune
typically computationally intensive tasks that are impicad
to carry out on hand-held computing devices. Furthermomghich are rigidly connected (see Fig. 1). The sensor data
constructing a map of the 3D locations of visual landmarks fused in an EKF to concurrently estimate the six d.o.f.
(e.g., SIFT features (Lowe 2004)) often used in these apese of the sensor platform, as well as the 3D map of the
proaches may not be geometrically meaningful or interpieta building’s perpendicular structural planes (i.e., thelsydloor,
by humans. Finally, extracting and matching visual landmarand ceiling). In what follows, we present the propagatiod an
in indoor environments can be challenging and unreliabke dupdate models used by the EKF.
to insufficient texture.

;’g ?ddress these Iim(;tatiolrﬁow_?hprcr(posg. f:;ln LIIN? ba?eq[ RN Filter Propagation
a aser scanner and an . The key differentiating factor . . .
of our work is that we can explore and map 3D environmentsThe EKF est|m_ates thg MU pose and linear velocity
with a sensing package that follows arbitrary 3D trajee®yi tpgether W!th the time-varying IMU .blases and the map. The
despite the fact that the exteroceptive sensor employeyl oﬂ'lter state is the(16 + V) x 1 vector:

¢ Laser scan p

senses in 2D during each laser scan. Specifically, our system x — (gL bl SvI bl °pl | di-- -dN}T
tracks the six d.o.f. pose of the person and measures both X7 | XT]T (1)
- s d )

known building planes as well as new planes which it maps
as the unknown portions of the environment are exploregtherex(¢) is the 16 x 1 sensor platform state, and;(¢)

We note that using commonly-occurring structural planés the N x 1 state of the structural plane map. The first
as map features ensures the applicability of the method domponent of the sensor platform state ig(¢), which
practice. The estimated structural planes directly reprethe is the unit quaternion representing the orientation of the
geometric layout of the building that can be easily intetgae global frame {G} in the IMU frame, {I}, at time ¢t. The

by humans. Moreover, due to the limited number of structuritame {7} is attached to the IMU (see Fig. 1), whilgZ}
planes in each building, the computational requirements igf an inertial reference frame whose origin coincides with
our algorithm do not grow unbounded over time, since thtae initial IMU position, and whose orientation is aligned
size of the estimated state vector remains bounded. Finaljjth the perpendicular structural planes according to the
our algorithm can perfornon-line calibrationof the relative filter initialization procedure described in Section IV. éh
pose between laser and IMU, which was assumed knowensor platform state also includes the position and wgloci
in our previous contributions (Hesch et al. 2009; Hesch andl {/} in {G}, denoted by the3 x 1 vectors“p,(t) and

Roumeliotis 2010). Sv,(t), respectively. The remaining components are the biases,
b,(t) and b,(t), affecting the gyroscope and accelerometer
I1l. ALGORITHM DESCRIPTION measurements, which are modeled as random-walk processes

A hand-held computer collects measurements from tloeiven by the zero-mean, white Gaussian naisg,(t) and
navigation aid consisting of an IMU and a 2D laser scannet,,,(t), respectively.



The building map is comprised d¥ static planar features The (15 4+ N) x 1 error-state vector is defined as
I1;,, ¢ = 1,..., N, which includes all planes (if any) that are - - L
known from the building blue prints, and grows as new planes X = { 1005 by °v7 by °p] | di---dy
are detected. Each plane is described by its Hessian normal _ [iT | iT]T (12)
form componentsi; and “m;, which are the distance from s dl >
the plane to the origin of G}, and the3 x 1 normal vector whereXx,(t) is the 15 x 1 error state corresponding to the
of the plane expressed ifi’}, respectively. The map state, sensing platform, an&g(¢) is the N x 1 error state of the
x4, consists of the scalar distances, i = 1,..., N, which map. For the IMU position, velocity, biases, and the map, an
are estimated along with the state of the sensing package. &dglitive error model is utilized (i.ez = « — 2 is the error in
only map perpendicular structural planes, hence, we do ribe estimatei of a quantityz). However, for the quaternion
need to estimate each plane’s normal-vector. Instead, ave stwe employ a multiplicative error model. Specifically, theoer
them in the map parameter vectffn7 ... GWJTV}T, where between the quaternianand its estimatg is the3 x 1 angle-
each componeritr; is determined once during the new planerror vector,d€, implicitly defined by theerror quaternion
initialization step (see Section IlI-C) or is available fiche A 1enT T
blueprint layout. With the state of the system now defined, 0q=q®q = [560 1] ’ (13)
we turn our attention to the continuous-time dynamical niod@heredg describes the small rotation that causes the true and
which governs the state of the system. estimated attitude to coincide. The main advantage of this

1) Continuous-time modelThe system model describing€rror definition is that it allows us to represent the atitud
the time evolution of the state is (see Lefferts et al. (19g2yncertainty by the3 x 3 covariance matrixs{66" }. Since

T

Trawny and Roumeliotis (2005)): the attitude corresponds to three d.o.f., this is a minimal
1 representation.
"Ge(t) = §Q(w(t))’(jc(t) 2 The linearized continuous-time error-state equation is
Gpl(t) = Gvf(ﬁ) ’ le(ﬁ) = Ga(t) (3) )’E _ |: FS,C 015><N:| i + |: Gs,c :| n
by(t) = mnug(t) , ba(t) =nua(t) (4) Onxis Iy Onx1s
di(ty = 0, i=1,...,N. (5) =Fcx+Gen, (14)

where Iy denotes theN x N identity matrix, F, . is the
continuous-time error-state transition matrix corresping to
the sensor platform state, a#, .. is the continuous time input
noise matrix, i.e.,

In these expressionsy(t) = [wi(t) wa(t) ws(t)]” is the
rotational velocity of the IMU, expressed ifY'}, “a is the
IMU acceleration expressed i}, and

0 —Ws wo ~
Qw) = Lw;(J “ lwx] 2| ws 0  —wl. —|wx] —I3 03 03 03
—Ww 0 —wy w1 0 03 03 03 03 03
Fyc=|-C"("gc)lax] 03 03 -C"('qgs) O3
The gyroscope and accelerometer measurementsanda,,,, 03 0; 0 0; 0;
used for state propagation, are 0; 0; I, 0, 0;
wm(t) = w(t) + by(t) +ny(t) (6) —I3 03 03 03 n
_ 0 I 0 0 g
m(t) =C('Gs(t)) (Ca(t) — ¢ b, (t ot 7 373 3. 3

an(0) = OUGe) (2l = ®) + b+l ) g ol o i) o, me [P

wheren, andn, are zero-mean, white Gaussian noise pro- 03 03 03 I3 0 @

cesses, andg is the gravitational acceleration. The matrix 03 O3 03 03 wa

C(q) is the rotation matrix corresponding 4o Also note that where03 is the3 x 3 matrix of zeros. The system noise co-

the distances_to.the builldin.g planes are fixed with reSpeCt\;é?riance matrixQ. depends on the IMU noise characteristics

{G}.’ thu§ .thelr time derivatives gre zero [see (5)]'_ and is computed off-line (Trawny and Roumeliotis 2005).
Linearizing at the current estimates and applying the ex-2) Discrete-time implementatiorfhe IMU signalsw,,, and

pectation operator on both sides of (2)-(5), we obtain thtest 5 are sampled at a constant ratél’, whereT £ ¢, | — .

estimate propagation model Every time a new IMU measurement is received, the state
A 1 . estimate is propagated using 4th-order Runge-Kutta naaieri
a(t) = §Q(w(t)) a(t) (8) integration of (8)—(11). In order to derive the discretedi
Sh,(t) = S, (), ¥, (t) = CT("4s(t))a(t) + g (9) covariance propagation equation, we evaluate the distirete
R R state transition matrix
bg(t) = 03><1 5 ba(t) = 03><1 (10) tht1
d ()=0, i=1,...,N, (11) Bi = Bllir1, fr) = exp (/t FC(T)dT) (19)
With a(t) =a,, (t) —ba(t), and@ (t) =w,, (t) — by (t). and the discrete-time system noise covariance matrix

41
Qd,k:/ P(tr1,7)GQGL R (thy1,7)d7.  (16)

LA point €p lies on planell; if 77 ¢p —d; = 0. 2



The propagated covariance is then computed as where’? = C('q,) [Cosgb sin ¢ O}T is the perpendicular
to the line direction, andp, is the position of the laser
. T I
Pirip = ®rPrip®s + Qa. (I7) " scanner in the IMU frame. Since the vecfdris unknown and
After processing the IMU measurements to propagate ta@nnotbe measu_red_we need to eliminf'ite _it from the equation.
filter state and covariance, we process any available laser sWe do so by projecting (21) ontor7, yielding thedistance
measurements in the filter update step (see Section I1I-B). measurement constraint
20 =] (Op; + C"('Ge) (Pr +p'0) —di = 0. (22)
B. Landmark Update .
) ) ) The expected measurement is
As the IMU-laser platform moves in an indoor environment, . .
the laser-scan plane intersects the perpendicular staictu 22 = 7} (“Pr + C*("4s) ('Pr + pm'lm)) —di.  (23)
planes of the bmldmg._ These me_asurements are e_xplmt-prqe measurement residual is
to update the state estimate. To simplify the discussion,
consider a single line measuremen?, corresponding to
the intersection of the laser-scan plane and map plaige, Z2 ~ [—°m7C”("4s) 'Pr + pmlmx]| Oixo °ml]| X,
(see Fig. 1). The_lme is Qescnbed in the Ia_se_r frarhe}, +[01ximy —1 Op(v_p] Xa
by (p, ¢), wherep is the distance from the origin dfL} to

= 29— 2y = —Zo and the
\@Srresponding linearized error model is

the line, andy is the angle of the vectorf perpendicular to +[-97IC" ("qc) pmls  CmICT ("4c) ] [qf]
the line? We will hereafter express the line direction §i}, . . . p
as’" =C('q,) [sing —cos¢ 0]", where'q, is the unit = hy Xs +hy g Xq + 73 1y, (24)

quaternion representing the orientation of the laser frantiee |, hore the vectord? ., h} ,, and~3 are the Jacobians of (22)

. ,87 ,d?
IMU frame (see Sect. VI). In what follows, we describe howyii, respect to the ‘state and line parameters, respectively
each line is exploited to define twaeasurement constraints We process the two measurement constraints together;

which are used by the EKF to update the state estimates. gacking (20) and (24), we obtain the measurement Jacobians
1) Orientation Constraint: The first constraint is on the

orientation of{ 1} with respect to{ G}. The normal to the plane H— [hf,s hid} r— [Wi] (25)
I1;, vector®x;, is perpendicular t&C”(’g.) "¢+ (see Fig. 1), hi, h3,] ’
which yields the followingprientation measurement constraintynich are used in the expression for the Kalman gain

— 1 _
z1=m7 C('qe) "€~ =0. (18) K = Py, H” (HP, , H” + TRIT) . (26)
The expected measurement is The residual vector is = [r; rg]T, and the state and the
% =°n!l C"("qe) Ie; , (19) covariance update equations are
where '£,, = C('q,) [sing,, —cos¢y, 0] is the mea- Xpt1lk+1 = X1 + Kr

suredline direction with¢,,, = ¢ —¢. The measurement resid-
ual is 71 = 2; — 1 = —2, and the corresponding linearized Pri1jpr1=(I-KH)P ) (I-KH)" + KTRI'"K".

error model is After updating the state and covariance with measurements

21 [<OnTCT("Ge) €5 x| O1x1a) Xs to planes currently in the map, we may have additional
~ measurements to process corresponding to planes that have
+ [01xn] Xa + [¢7TCT (") bm 0] {?] not been observed previously. In Section 1lI-C we describe
P how to augment the map with an initial estimate of each new
=hj X +hi Xs+71n, (20)  feature.

where ¢, = C('q,) [cos¢m sing, 0] is the perpen- o
dicular to the measured line direction apgl = p — j is the C- Landmark Initialization

measured distance to the line. The vectofs, hi ;, and~{ There are three cases which we distinguish for plane initial
are the Jacobians of (18) with respect to the state and ligation. The first is planes which are known perfedlpriori
parameters, respectively. TBex 1 error vectom, is assumed (€.g., from “as-built” building blueprints). The seconcas$

to be zero-mean, white Gaussian, with covariance mat@xe planes which are approximately known (e.g., extracted
R = E{n/n}} computed for each line from the weighted linefrom imprecise building blueprints, or “as-designed”).€Th

fitting procedure (Pfister et al. 2003). third type are the unknown planes that occur in the principal
2) Distance Constraint:From Fig. 1, the following geo- building directions (i.e., the floor, ceiling, and orthogbn
metric relationship holds: building walls). While we do not know the location or number

o I , o . of these planes, whenever we observe them, we know they
p: + C'("Ge) ('po + p%) = d; “m; +°4, (21)  exhibit one of the three known principle orientations, antyo

’ . . . the distance to the plane must be estimated.
We utilized the Split-and-Merge algorithm (Nguyen et al02Pto segment 1) Perfectly k | Perfectly k |
the laser-scan data and a weighted line-fitting algorithfist@ et al. 2003) ) Perfectly known planesPerfectly known planes are

to estimate the line paramete(s, ¢) for each line. straight forward to exploit in our navigation framework &n



all three d.o.f. of the plane parameters are knavpriori. scalar variance of the new planBy 4, and the correlation
We could include each plane in the state vector with detween the new plane and the current stR{g,, as:
associated zero-covariance and zero-correlation to tee re

of the state. However, in practice we simply maintain an Pya =hj Psshy s + 73R, (31)
additional parameter vector of known planes, which reduces Pyx =PL;, = [h Py hi Pyl (32)
the computational cost of the filter by limiting the stateesiz
even further. When observing a perfectly known plane,
follow the procedure in Sect. 11I-B to update the state, wit
the caveat that the Jacobians taken with respect to the known paug — |:Pk+1k de/} (33)
plane parameters are set identically to zero [see (20) ah)il (2 Pyx  Paa]’

2) Approximately known planes?lanes which are known After performing state and covariance augmentation duttieg
approximately are the most common to arise in typical imandmark initialization step, we return to the propagatitep

plementations when a blueprint of the building is availableind process the next IMU measurement (see Section IlI-A).
This occurs because for practical reasons during building

construction, walls are not always placed precisely whieeg t D. Zero-Velocity Update
were designated and building tolerances permit some room fo\yhan the laser scanner does not detect any structural

error. In these instances, we include an initial estimateach 5005 along certain directions for an extended period of
building plane in the map, and we set the covariance for eaglye the pose estimates accumulate errors due to driftsein t
plane according to the accuracy of the blueprints. In peacti 5. ejerometer and gyroscope biases. In addition, buildfup o
if the quality of the blueprints is unknpvyn, It sufﬂces to ban qientation errors can cause the filter to incorrectly irdég a
measure a small numper of the building planes in order E)Q)rtion of the gravitational acceleration. This effect igsely
_charac_ter_lze the blueprint accuracy. _We assume that theserr,ated to the system’s observability (see Section V) and

in the initial estimates of the approximately known planes a.,mnensated by means of drift correction during instartrase
uncorrelated with each other and the sensor platform siate, stationary periods of the motion (e.g., when a shoe-mounted

set the corresponding cross-correlation entrieRito zero. U is stationary during the stance phase while walking,
3) Unknown planesWhen measuring a new plariéy 1, see Sagawa et al. (2000)).

we first determine if the plane’s Orientatioﬁﬂ'NH, corre- This procedure’ termed aero-vek)city updateis chal-

sponds to one of the three cardinal directios,j = 1,2,3, |enging for two reasons: (i) the stationary periods must be

considered in the map. We employ a Mahalanobis distangrntified without arexternal referenceand (ii) the IMU drift

test to measure the probability of correspondence betwegfor must be corrected while properly accounting for the

the plane’s orientation and each of the cardinal directioRgate uncertainty and IMU noise. Existing methods typjcall

in the map. Specifically, we compute the orientation redidugetect stationary periods based on a threshold check for the

whereh, ; and~y, are defined in (24). Lastly, the augmented
variance P¢“9, is computed as:

N N . . . . v
T = _*eJT'CT(ch) £, 7 = 1,2,3, and the covariance of accelerometer measurement. These require significant hand
the residual tuning, and cannot account for the uncertainty in the cdirren
h; state estimate.
_ T T 58 2T
sj = [Bfs Bia] Pryrw {hm} +o5717, (1) n contrast, we formulate the zero-velocity constraint as

whereh; , and~, are the measurement Jacobians defined an.EKF_ measurement an_d use the Mahelanobis distance test
(20) evalﬁated alﬁﬂ. e, ando? is the (1, 1) element of {8 |dent|fy the stationary intervals. Specmcally, for thero-
R. I the smallest I\/Izahalzjaﬁobis dq;stance ’ velqcny update, we employ the_ followmg_measurement con-
' R straints for the linear acceleration, and linear and roiei
velocities which are (instantaneously) equal to zero

T
= min —= (28)
J T T a7
zZ¢ = [a w VI] = 09x1. (34)

2

Mjmin 5j
is less than a probabilistic threshold, then a new landmark _ _ _
is initialized with normal vector®my,; = ejmnin. After The zero-velocity measurement residual is
determining the new plane’s orientation, we compute the

distance to the new plane by solving (23) bt 1, i.e.,

re =2 —2¢ = wm — by (35)
dN+1 :GWJTV-H (GIA)IJr CT(I(iG) ('ps erm%m)) (29) =V,
and augment the state vector a&9 2 [)A(T | ciNﬂ}T- and the corresponding linearized error model is
Next, we need to augment the filter's covariance, which [—|C ("¢s)°gx]| 0sx3 Osxs I3 O3xs n,
requires first partitioning the prior covariance into Zer 0343 I3 0343 O3x3 Osx3|%+|n,
P [P, P (30) 03x3 O03x3 I3 O3x3 0Osx3 n,
1|k = P, Py’ =H¢x+n¢, (36)

whereP;, is thelb x 15 sensor error-state covariand®;, is whereH, is the Jacobian of the zero-velocity measurement
the N x N map error-state covariance, aRd, = P, are the with respect to the state, and, is a zero-mean, white
15 x N cross-correlation components. We then compute ti&aussian process noise that acts as a regularization term



for computing the inverse of the measurement residuaB:! Orientation Initialization
covariance. Based on this update model, at time é&tepe
compute the Mahalanobis distangé = r/'S; 'r¢, where

Sk = HcPy HY + R is theTcoyarlance of the measuremenfiyo orientation of the IMU can be directly computed from
reS|dL_JaI andRC_ - E{HCHC} is the measu_r_en_went NOIS€e initial orientation of the laser scanner. We describe tw
covariance. Ify* is less than a chosen probabilistic thresholdyathods to compute the orientation of the laser scannegusin
a stationary interval is detected and the state vector a@d ffe measurements of three planes with linearly-independe
covariance matrix are updated using (34)-(36). We note thaf,mna vectors. The first method, adapted from Chen (1991),
once we use the inertial measurements for an update, W@, ires observation of all three planes from the same view-
cannot use them for propagation. However, this is not ajint while the second method is capable of using laser scan

issue, since the IMU is static and we do not need 0 Uxfaasurements taken from different perspectives by exmipit
the kinematic model (2)-(5) to propagate the state est#natg,o motion information from the gyroscopes.
Instead we employ the following equations:

Since the IMU and the laser scanner are rigidly connected
and their relative transformation is known (see Section Wig

1) Concurrent observation of three plane¥vhen three
'Ga(t) = 04x1 , “Pi(t) = 03x1 , “Vi(t) = 031 non-parallel planes are scanned from the same viewpaint (i.
b (£) = Dy (1) b (£) = na(t). the same frame o_f reference), the estimate of the or_lentatlo
g wor e we 17, is initialized using the method of Chen (1991). In this case,
In essence, this static-IMU propagation model indicated tithree quadratic constraints in terms of the unit quaterfipn
the state vector and the covariance matrix of all componemt®e obtained from the laser scans [see (18)], each of them
are kept constant. The only exceptions are the covariarfceslescribing the relationship between a line measurement and
the errors in the gyroscope and accelerometer bias esimdtee corresponding plane:
\r/\;r::ggr:]ns\lraelissozge?ach time step to reflect the effect of the = T O =0, i=1,....3 (37)
Chen’s algorithm algebraically manipulates the rotatioa- m
IV. FILTER STATE INITIALIZATION trix to convert this system of equations to an eighth-order

Bef ing the EKF to f ts f the | univariate polynomial in one of the d.o.f. of the unknown
elore using the 0 luse measurements rom e 1asttion. Eight solutions for this univariate polynomialea

scanner and the IMU, we need to initialize the state VeCtSBtained for example, using the Companion matrix (Cox
estimatex|, along with its covarianc®y,. This is performed ot al. 2064)_ The rema’ining 2 d.of. of the rotatin,, are

!n_t_hr_ee seqyentlal stages: (i) the gyroscopes blalsg,_sare subsequently determined by back-substitution. In genaral

initialized using thepartial zero-velocity updates (Section IV- | ref : ired identify th uti

A), (ii) the IMU orientation,’ g, is initialized employing the external reference Is required to | entity the true sofutio
' Ao from the eight possibilities. In our work, we employ the

Ese;fgﬁgiigsliiggozsl,i\rfB)'z:rr:\fgll%)::ri]te alfcgign}estscf::’l\gravity measurement from the accelerometers and the planes
@ 9 Y up '{Hentities to find the unique solution.

C). Once these three stages are completed, we initialize ) Motion-aided orientation initialization:In order to use
position of the sensing platfornf;p,. However, we note , L . : .
hen’s method for initializing the orientation, all threied

that if there are no structural planes in the building ma .
I . . . . easurements must be expressed with respect to the same
initially known (i.e., if no blue print was provided), we can

arbitrarily select the origin of the global frame. Thus, tr frgrr]rclir(r)énrt?fegebr;%er\;/:dent;:e tt:ée;sneorn-sizrr?rl]ls: F;rlgpnesthr:u:;rsg
convenience, we set the origin of the global frame to Comd(i}/iew oint Iy|owever satis?‘/yin this prerequisite is quitait-
with the origin of the initial IMU frame, i.e.“p, = 03x1. point. ' 9 prereq N

; ~ . ing since it requires facin rner of a room, for exampl
The initial covariance fofp; is set to zero accordingly. g since It requires facing a corner of a room, for exampie,
where three structural planes intersect. In this work, we

address this issue by using the gyroscope measurements to
A. Gyroscopes’ Biases Initialization transformthe laser scans, taken from different viewpoints at

The completezero-velocity update described in Section I11different time instants, to @ommon frame of referenceVe
D cannot be directly applied to initialize the gyroscopesbi choose as the common frame, the IMU frame when the first
This is due to the fact that an estimate of the orientatipy laser scan is recorded (i.e., at tintg), and denote it by
required for evaluatingi. [see (36)], cannot be obtained be{/1}- In this way, we can rewrite the inferred measurement
fore estimating the gyroscope biases (Section IV-B.2)efx$, Cconstraints (18) at time;, j = 2,3 as
to provide an initial estimate for the gyroscope biases,we GTrT_CT(z(jG(tj))zej; (t;) = cﬂ;CT(IqG(tl))hej;(tj) -0

usepartial zero-velocity updates. In particular, we initially set I (38)
b, to an arbitrary value (e.g., zero), while its covarianceeis s
to a large value, reflecting the lack @foriori knowledge about where Ilﬁj(tj) = C(’lqu)%j(t]—) is the line direction

the estimates. Then, we keep the IMU static (ke 03x1) corresponding to the planél;, recorded at timet;, and
and use the second block row of (34)-(36) to perform a partimhnsformed to the framél;}. Since the gyroscope biases
zero-velocity update. This process is equivalent to avegag are already initialized, the quaterniofg;;, can be obtained
the (static) gyroscope measurements to compute an initil integrating the rotational velocity measurements [&e (
estimate of the bias. and (6)] between time instants andt;. Once all the line



directions, "¢, (t;), are expressed with respect {d }, we
employ Chen’s algorithm, described before, to find the ahiti

_lE(F’ 1=
: : E('ge)b E('qe) 04x3
orientation,’ g (t1). 2 @)Pg 2 G x

q
: o . . . | by O3x1 O3x3 O3x3
The covariance of the initial orientation estimate is afgai | o, Cg—CT'g)ba| + | O3x3 |wm+ |CT(1d0) |am,
by computing the corresponding Jacobians [by linearizin b, 0 0 0
3Ix1 3x3 3x3
(38)] and using the uncertainty (covariance) in the estsaf “p, Gy, 033 053

’Ej and’tq;,. However, note that the estimates of the relativ
transformations'g,, and’*g,, are correlated. To account for o B 2 (41)
these correlations, we employ thchastic cloningechnique

(Mourikis et al. 2007) to augment the state vector and tivéherew,, anda,, are considered the control inputs, and
covariance matrix of the EKF witft g, at time¢; (assuming

we have started integrating from tinte). In this way, we E(q) = [quIBJquTqXJ] with ¢ = [2 ] - (42)
are able to estimate the IMU orientation by integrating the *
gyroscope measurements, and concurrently compute the d¥pte also thafy is a 16<1 vector, whilef, andf, are matrices

relations between the IMU orientation estimates at the tin dimensions 16:3. _
instants when laser scans are recorded. In order to prove that the system is locally weakly ob-

servable, itsufficesto show that the observability matrix,
. o whose rows comprise the gradients of the Lie derivatives
C. Accelerometers’ Biases Initialization of the measurementd’ and hi with respect tofy, f,,

In this step, similar to the gyroscope bias initializatiorgnd £, [see (41)], is full rank (Hermann and Krener 1977).
we set the estimate for the accelerometer biages, to Since the measurement and kinematic equations describing
an arbitrary value (e.g., zero), and set its covariance toth®e IMU-laser scanner localization are infinitely smootie t
sufficiently large value, representing our uncertaintyuilibe observability matrix has an infinite number of rows. However
arbitrary initial estimate. Since the IMU is initially siatwe to prove it is full rank, it suffices to show that a subset of its
set the velocity estimatefv,, and its covariance to zero.rows are linearly independent. The following matrix congai
Then, keeping the IMU static, we utilize tlmmpletezero- one such subset of rows whose linear independence can be
velocity update described in Section 1lI-D to initializeeth easily shown using block Gaussian elimination (Mirzaei and

accelerometer biases. Roumeliotis 2009):
Vﬂgohf I, O4x3 O4x3 O4x3 O4x3
V. OBSERVABILITY ANALYSIS V£L hj 0354 0343 0343  Osx3 15

1 x| 11~
A key task when designing any estimator is to stud VE DT =| X1 —3E("Ge) Oixs  Ouxs  Ouxs

1 1,*
the observability properties of the underlying system, ¢ d Vggohg 0354 0353 Is 93f§ 033
termine if the available measurements will provide enoug Vv L5, h3 X2 0353 O3x3 C"("%c) Osx3

information to estimate the state. In this section, we provg this matrix, £i h*(x) denotes the-th order Lie derivative
that the presented system for IMU-laser scanner locatizatiof h(x) with reosp]ect tof,. The matricesX, and X, have

is observable when three known planes (i.e., available frqmﬂenS,on% x 4 and3 x 4, respectively, and do not need to
the “as-built” or “as-designed” blueprints), whose normale computed explicitly since they will be eliminated by the
vectors are linearly independent, are concurrently oleenmgjock element(1,1) of the matrix, i.e., the identity matrix
by the laser scanner. Under this condition, which is fuffilley, Since Z(g) and C(g) are always full rank for any unit

in most practical scenarios (e.g., if the scan plane inétsseqyaternion; (Mirzaei and Roumeliotis 2009), all the rows of
two walls and the floor), we can employ the pose estimatigRe above matrix are linearly independent. Hence, we caeclu
method described in Section IV to estimdtép,, qc). FOr the observability analysis with the following lemma:

the purpose of observability analysis, we introduce two new| emma 1:Given line measurements corresponding to three
inferred measurements] andh; that replace the laser scarknown planes with linearly independent normal vectors, the

measurements (18), (22): system describing the IMU-laser scanner localizationdslly
T0e = hi(x) = £, (74y, €y, 70 weakly observable.
GqG B hi(x) B 51(%1 1; 123) (40) Simply put, as long as the laser scanner measures the walls,
pr =hi(x) =&, b2, L) (40) as well as the floor or ceiling, the filter should be able to

The two functions¢; and &, in (39) and (40) do not need Maintain an accurate estimate the pose of the person. As
to be known explicitly; only their functional relation witthe the person moves through the environment, the laser scanner
random variables,; and©p,, is required for the observabil- measures different planes over time, leading to higherracgu

ity analysis. Our approach uses the Lie derivatives (Hermafistimates. When the sensing platform stops moving, we can
and Krener 1977) of the above inferred measurements (ZPply zero velocity updates (see Section I1I-D), to redutfé. d

and (40) for the system in (2)-(5), to show that the corre-

sponding observability matrix is full rank. For this purpps VI IMU-L ASER SCANNER EXTRINSIC CALIBRATION

we first rearrange the nonlinear kinematic equations (2)p(5 The laser scan measurements must be transformed to the
a suitable form for computing the Lie derivatives: IMU frame before an EKF update can be performed. In



particular, in the orientation constraint (18), the meaduine augmented state®*9 while in a known or unknown environ-
direction “¢* that is registered in the laser scan frame, isment with at least three perpendicular walls. Note thatesinc
expressed with respect to the IMU framid}. Similarly, in there is not enough information to estimate the calibration
the distance constraint (22), the perpendicular vectoh& tfrom a single viewpoint, we must employ a “motion-induced”
line direction,“¥, is first transformed to the IMU frame. Tocalibration strategy. In particular, based on a Lie deireat
perform these transformations, we need to kndw,,'p.), analysis of the system observability properties (see Gedf
i.e., the rotation and translation between the IMU frame amdirzaei and Roumeliotis (2008, 2009)), we have shown that
the laser frame. If the transformation between the IMU arttie IMU-laser calibration parameters are observable when a
the laser scanner is not precisely known, the constrail@p (least two rotations are performed about different axeswaut
and (22) will not hold, and updating the filter based on theamit the details here for brevity. We move the sensor package
can result in inconsistency and divergence of the estimatorand collect data until a satisfactory level of accuracy for t
Some methods exist in the literature for extrinsic las&@libration parameters (based on te bounds computed
scanner calibration (e.g., Skaloud and Lichti (2006); Riegfrom the estimated covariance matrix) has been achieved.
et al. (2010)), however, these have primarily focused orhe results of our on-line calibration process, obtainedevh
recovering the relative orientation of the sensor (i.ell, roexploring an unknown area, are presented in Section VII-C.
pitch, and yaw angles), and utilize GPS as an additional aid
in the calibration process. In contrast, we seek to comge t VIl. EXPERIMENTAL RESULTS
frame transformation between the laser and IMU using only Our proposed IMU-laser localization and mapping algo-
the sensors’ own motion and measurements to planes in fiBm was evaluated with a sensing package comprised of a
environment. solid-state ISIS IMU operating at 100 Hz and a SICK LMS200
To address this issue, we have employed a method similaser scanner operating at 10 Hz, mounted on a navigation
to our previous work for IMU-camera calibration (Mirzaeican box to log data. These sensors were interfaced to a laptop via
Roumeliotis 2008) to calibrate the transformation betwisen RS-232 which recorded the time-stamped measurements. The
IMU and the laser scanner. For this purpose, we have includéata-logging software was implemented in C++, whereas the
(*g,,'p.) in the state vector of the EKF, i.e., EKF was written in MATLAB.

X9 = ['gh bL v bl °pT | ‘gt 'pl | dy---dy]

=[xT | xI | x3]". (43)

S C

T
A. Navigation in a known environment

During the first experiment we tested the navigation al-
We augment the system equations (2)-(5) with gorithm in a known environment along a trajectory loop of
G0 TpT =0 (44) 120 m in Igngtﬁ. The motlon_proflle pf the sensor platform
L L contained instantaneous stationary time periods to allow f
which specify that the IMU-laser transformation is rigiddan zero-velocity updates. These updates cause small redsctio
does not change with time. We also extend (20) and (24) itb the position estimates’ covariance [see Fig. 5(a)]. karg
include the corresponding Jacobians with respect to’the reductions in the covariance take place whenever the laser
and’q,, respectively. We do so by first writing the orientatiorscanner detects three planes whose normal vectors aréyinea
and distance constraints explicitly in terms of the lasetMU  independent (e.g., two perpendicular walls and the cgiling
transformation parametetég,, 'p.), i.e., within a short period of time; an event that typically oc-
P o vpal curs at hallway intersections (e.g=49 sec). Thea priori
2= C('qs) C('qr) "€~ =0 (45)  known map, available from the building blueprints, conéain
zg =] (“p; + C"("qs) 'Pr +p C('3.)")) —d; = 0. 9 walls and the ceiling. Employing this map, neatly, 000
(46) measurement updates were performed duringStheminute
trial. The combination of the laser measurements and zero-

The linearized error models for (45) and (46) are , i NS ;
velocity updates allowed the filter to maintain a preciseepos

Z1 = hi (X, +hj 4 Xq + 7] ng estimate of the sensor platform. Specifically, the maximum
+ [GWTCT(IéG) C (ICjL)LeL x| leg} %, uncertainty in the position estimates waslé cm (lo),
oy ;(Z BT % L hT R +m v a7 while the maximum uncertainty in the attitude estimates was
T leTe T Td 4T ne 0.1 deg (Lo) [see Fig. 5(a) and Fig. 5(b)]. The final position
Zy > hy Xs +hy g Xq+ 73 0y uncertainty was27.5 1.2 1.3] cm (30). Note that thez-
+ [¢77C™("4s) [C ("4L) p4mx] °mICT("4s)]%. direction uncertainty is larger in the final corridor, since
—h}, %, +h%, %+ h5, Xa+ 5 no, (48) planes are observed that provide information alongrtais.
B . ~ ~ T
where the calibration error-state &. = ['d6. ‘P[] . B, Navigation in a previously unknown environment

the Jacobians with respect to the state and line parameter%e conducted a second experiment in a previously unknown
h?,, h’,, 47, i = 1,2, are defined in (20) and (24), and P P y

6,s? . . L indoor environment, along a closed-loop path of approxéhyat
the Jacobians with respect to the calibration paramel€rs, . . .
i = 1,2 are implicitly defined in (47) and (48). 270 m in length (see Fig. 4(a) and Fig. 4(b)). The 3D

The key idea for IMU-laser calibration is to estimate the 3video available anhtt p.// mars.cs.um edu/ vi deos/I M- Laser . mav
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Fig. 2. (a) 3D view of the estimated trajectory. The sensiagkpge was initially placed on the ground for the purposeMifi-bias initialization, and

subsequently picked up and carried in a clock-wise loop 6f h2in length through the building hallways. (b) Top-view bétestimated 3D trajectory during
an 8.5 min experiment. The red circle indicates the starting pmsifon the floor), and the dashed red lines indicate the walich were included in the
building map.
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Fig. 3. (&) The trace of the position covariance. During tine, the maximum uncertainty along any axis v@as$6 cm. (o). (b) The trace of the attitude
covariance. During the run, the maximum uncertainty aboytaxis was0.1 deg. (o).

0 100

trajectory covered two floors of Akerman Hall at the Universi variance occurred whenever an estimated structural plase w
of Minnesota, which included traversing two stairways anc-detected (e.gt, = 555 sec,z-axis update). The trajectory
a ramp. The environment contained a multitude of cluttevas accurately tracked, with an average position uncéytain
(e.g., trash cans, open and closed doors, storage boxes, ahfl cm (1o), and an average attitude uncertainty0di2 deg
furniture), as well as normal pedestrian traffic flow. Despit(1c) [see Figs. 5(a), 5(b)]. The final position uncertainty afte
the large amount of non-planar objects observed by the latsop closure Was[2.29 6.84 0.43] cm (o). In addition
scanner, our localization aid accurately captured the §pua to tracking the six d.o.f. pose of the person, a map was
of the building, which in turn enabled precise localization constructed which containeld walls and the ceilings of both
During the experiment, as in the known map case, tidlilding levels (see Figs. 4(a) and 4(b)). The uncertaifithe
motion profile of the sensor platform contained instantaiseol€ast accurately estimated distance to a wall wasg cm (1),
stationary time periods to allow for zero-velocity updatey/hereas the average uncertainty for all planes was cm

These updates caused small reductions in the position etiz)- The quality of the map and trajectory estimates is due to
mates’ covariance [see Fig. 5(a)]. Larger reductions inctihe More thanl9,000 measurement updates that were performed
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Fig. 4. (a) As the person walks with the sensing package, ltiee &istimates their 3D trajectory as well as a 3D represientaf the unknown environment
comprised of planar features. A side-view of the estimatéd @ trajectory is shown, which covers two floors of the buiidi The estimated walls on the
first and second floors are depicted, but the estimated geilim floor planes have been omitted for clarity of presentatfb) A top-view of the estimated
3D trajectory during the3 min experiment. The total length of the trajectory2i80 m. The trajectory starts on the first floor (bottom figure)mtls up the
disability ramp and the front stairs (picture A), and traesr the corridors (picture B) of the second floor clockwisg figure). Subsequently, it descends
back to the first floor on the second staircase (picture C),tevérses the first floor (bottom figure) counter clockwisguming to the origin. Picture D
shows thecurvedintersection of the two corridors where no wall was detecldte estimated walls are depicted in blue, and the ceiliryfeoor have been
omitted for clarity of presentation.
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Fig. 5. (a) Thelo for the z, y, and z axes. During the run, the maximum uncertainty along any wes 43.94 cm (1o), while the averagdo for the
least accurate axis was16 cm. (b) Thelo for the roll, pitch, and yaw angles computed from the angterecovariance. During the run, the maximum
uncertainty about any axis was06 deg. (o).

during thel3 minute trial. planes; however, our algorithm performs accurately in both
scenarios.

C. Extrinsic laser-to-IMU calibration Figures 6(a) and 6(b) depict the results for the position

We now present the results of our extrinsic laser-to-IMldnd orientation estimates, respectively. In order to destrate
calibration process. Following the procedure of Section Vihe consistency of the calibration process, we compute the
we augmented the state vector with the laser-to-IMU transferror of the estimates with respect to the final estimateyalo
mation{‘q., p.}, and concurrently estimated these paramevith the correspondin@cs bounds. We note that since this
ters while navigating in a previously unknown building (se&s an experimental trial, it is impossible to know the true
Section VII-B). We note that calibration can be made momalue of the rotation and translation between the laser and
accurate and converge faster if completed during a separi\); however, the obtained results match closely with the
initialization phase in an environment with perfectly know best estimates that we could achieve through hand-measured
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Fig. 6. (a) The relative-translation error (computed verthe final estimate) and the correspondizg bounds for the laser-to-IMU translation vector. The
final uncertainties were 0.54 cm along x, 0.76 cm along y, add ¢m along z&o). The final translation estimate wap,; = [25.91 —3.13 —13.42]7 cm,
which agrees with our best hand-measured estimates. (bjeldte/e-orientation error (computed versus the finalneste) and the correspondirdgr bounds
for the laser-to-IMU rotatior! g;,. The final uncertainties were 0.02 deg in roll, 0.11 deg inkpiind 0.08 deg in yawsg). The final orientation estimate was
177.44 deg in roll, 67.4 deg in pitch, and -2.29 deg in yaw Yeoted from quaternion to roll-pitch-yaw convention), afiniagrees with our best hand-measured
estimates.

technigues. The estimated laser-to-camera translatictove  Our future work includes providing an efficient and intugtiv
was’p, = [25.91 -3.13 —13.42] cm, and the estimated system interface for a visually impaired person. Clasgifica
orientation was 177.44 deg in roll, 67.4 deg in pitch, an@92. of the non-planar objects and obstacles by processing see la
deg in yaw, which we converted from quaternion to roll-pitchscans is also within our near goals.

yaw convention for ease of presentation. The most uncertain
axis for position was 1.47 cn3§) along z, while the most
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