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SYSTEM AND METHOD FOR
CONSTRUCTING DISTANCE ESTIMATE
MODELS FOR PERSONAL NAVIGATION

BACKGROUND

[0001] The safety and efficiency of coordinating teams,
such as firefighters and first responders working in complex
and dynamic environments, can be significantly enhanced
through situational awareness (SA). A key challenge in SA is
determining the position and orientation (pose) of individuals
with respect to a common frame of reference, which helps
coordinate the actions of team members. A common approach
is to use the Global Positioning System (GPS) satellite net-
work to track each person’s location. Unfortunately, the most
challenging emergency scenarios often occur in areas that
preclude the use of GPS due to partial or total signal disrup-
tion and multi-path effects (for example, inside buildings, in
mines and caves, underwater, or in an urban canyon). When
GPS is unavailable, personal navigation solutions based on
inertial measurements from a body-mounted inertial mea-
surement unit (IMU) can provide position and orientation
information. However, unaided IMU-based personal naviga-
tion solutions quickly accumulate errors due to the integra-
tion of both sensor noise and bias. One method for aiding an
IMU-based personal navigation solution is to incorporate
other sensors (for example, a compass) into the personal
navigation system. However, the incorporation of other sen-
sors increases the size, weight, power requirements, and com-
plexity of the navigation platform.

[0002] For the reasons stated above and for other reasons
stated below which will become apparent to those skilled in
the art upon reading and understanding the specification,
there is aneed in the art for improved systems and methods for
constructing distance estimate models for personal naviga-
tion.

SUMMARY

[0003] The Embodiments of the present invention provide
methods and systems for constructing Distance Estimate
Models for personal navigation and will be understood by
reading and studying the following specification.

[0004] In one embodiment, a distance estimation system
comprises: a gait information memory configured to store
gait information about a gait mode; a biometric data memory
configured to store a biometric profile for a user; a frequency
module configured to identify a gait frequency; and a distance
calculation module configured to calculate the distance trav-
eled by the user by creating a distance estimate model based
onthe gait mode, the biometric profile, and the gait frequency,
wherein the distance calculation module creates the distance
estimate model by performing a regression analysis on move-
ment information from at least one user.

DRAWINGS

[0005] Embodiments of the present disclosure can be more
easily understood and further advantages and uses thereof
more readily apparent, when considered in view of the
description of the preferred embodiments and the following
figures in which:

[0006] FIGS. 1A and 1B are respectively a block diagram
and flow chart for an exemplary distance estimation system of
one embodiment of the present invention;
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[0007] FIG. 2 is a flowchart of an exemplary method for
acquiring training data of one embodiment of the present
invention;

[0008] FIG. 3 is a block diagram illustrating an exemplary
personal navigation system of one embodiment of the present
invention;

[0009] FIG. 4is a flowchart of an exemplary method of one
embodiment of the present invention;

[0010] FIG. 5is a flowchart of an exemplary method of one
embodiment of the present invention;

[0011] FIG. 6 is a block diagram of an extended Kalman
filter framework of one embodiment of the present invention;
and

[0012] FIG. 7 depicts an example of accelerometer data for
aperson walking in one embodiment of the present invention.
[0013] In accordance with common practice, the various
described features are not drawn to scale but are drawn to
emphasize features relevant to the present disclosure. Refer-
ence characters denote like elements throughout figures and
text.

DETAILED DESCRIPTION

[0014] In the following detailed description, reference is
made to the accompanying drawings that form a part hereof,
and in which is shown by way of specific illustrative embodi-
ments in which the present disclosure may be practiced.
These embodiments are described in sufficient detail to
enable those skilled in the art to practice the present disclo-
sure, and it is to be understood that other embodiments may
be utilized and that logical, mechanical, electrical, and
method changes may be made without departing from the
scope of the present disclosure. The following detailed
description is, therefore, not to be taken in a limiting sense.
Further, the various sections of this specification are not
intended to be read in isolation but considered together with
the teachings of the written description as a whole.

[0015] IMU based personal navigation systems typically
accumulate errors during operation due to integration of both
noise and sensor bias. Embodiments of the present disclosure
provide a distance estimation system derived from human
gait models, which can reduce personal-navigation-system
pose errors by constraining the estimated motion of a person.
A human gait model defines the body motion as a function of
parameters, such as gait mode, frequency, and biometric
information. These models are employed to supply distance
measurements to an estimator (for example, an extended Kal-
man filter) to reduce the errors that arise in an IMU-based
personal navigation system.

[0016] FIG. 1A is a block diagram of a distance estimation
system 100 for estimating the distance traveled by a user.
Distance estimation system 100 includes a memory 102 con-
figured to store information used by distance estimation sys-
tem 100. Memory 102 includes a biometric data 105 which
includes biometric information about one or more individual
persons who will use a device in which distance estimation
system 100 is utilized. The phrase “biometric information,” as
used herein, includes information that describes an individu-
al’s physical characteristics. For example, biometric informa-
tion includes height, leg length, thigh length, arm length,
weight, gender, and the like. As people exhibit different gait
patterns, biometric data 105 can parameterize the gait varia-
tions among individuals.

[0017] Memory 102 also includes gait information 107.
Gait information 107 includes details about a person’s gait
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while the person is moving. The terms “gait” and “gait mode,”
as used herein, generally refer to the pattern of movement of
a user’s limbs while moving from one location to another.
Thus, gait information 107 stores data indicating a pattern of
repetitive limb movements. Exemplary gaits represented in
gait information 107 include, but are not limited to, level
walking, stair ascending/descending, side-shuffle walking,
duck (firefighter) walking, hand-and-knee crawling, military
(elbow) crawling, jogging, running, and sprinting. In one
embodiment, a user enters a gait mode directly into gait
information 107. In an alternative embodiment, a gait classi-
fier system uses an algorithm to determine the gait of a user.
For example, a system and method for wavelet-based gait
classification can be found in U.S. patent application Ser. No.
12/900,315, filed Oct. 7, 2010, which is herein incorporated
by reference.

[0018] Distance estimation system 100 also includes a pro-
cessing unit 104. Processing unit 104 employs the informa-
tion contained in memory 102 to calculate the distance trav-
eled by a person using distance estimation system 100.
Processing unit 104 includes a frequency module 110 config-
ured to determine a gait frequency from observations of an
individual’s motion. The term “frequency,” as used herein,
generally refers to the number of repetitive gait motions per
unit of time. In one example, the frequency of level walking
refers to how many steps or are repeated per second, or
equivalently, the inverse of the time duration of each step. For
instance, an individual who takes two steps every second, has
an associated frequency of 2 Hz. In one embodiment fre-
quency module 110 applies a Fourier analysis (such as, but
not limited to a Fast-Fourier Transform (FFT)) to motion
information received from an IMU 112 that is coupled to
processing unit 104. Using the Fourier analysis, frequency
module 110 identifies a dominant frequency, a group of fre-
quencies, or an identifying frequency pattern, from the
motion information. Based on this initial estimate of the gait
frequency, individual step times are computed accurately
using the time-difference between detected critical points in
the raw IMU 112 data signals. In some embodiments, the
critical points are peaks, valleys, or zero-crossings (for
example, time instants of highest, lowest, or zero acceleration
during the gait cycle).

[0019] Inone embodiment, frequency module 110 directly
monitors the frequency of the corresponding gait. Alterna-
tively, frequency module 110 receives the frequency estimate
for the current gait from external instrumentation such as
described in greater detail in FIG. 3 below. For example, in
one embodiment, a navigation processor provides informa-
tion that indicates the frequency of a gait mode. Alternately,
other dedicated instrumentation like a gait classification mod-
ule provides information about the frequency. In yet other
embodiments, a user can directly instruct frequency module
110 about the frequency of a gait.

[0020] Inatleast one embodiment, distance estimation sys-
tem 100 includes distance calculation module 106. Distance
calculation module 106 uses the data contained in memory
102, which contains gait information 107 and biometric data
105, along with data received from frequency module 110 to
calculate the distance traveled by a user. To calculate the
distance traveled by a user of distance estimation system 100,
distance calculation module 106 creates a distance estimate
model. Distance calculation module 106 develops the dis-
tance estimate model by performing a regression analysis on
acquired training data.
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[0021] As illustrated in FIG. 1B, three distinct phases are
involved in training and operating distance estimation system
100. These phases include a first phase illustrated at 150
which comprises acquiring training data to populate gait
information 107. The second phase illustrated at 160 com-
prises creating a distance estimation model from the gait
information using model regression analysis. Finally, the
third phase, illustrated at 170, is the operating phase compris-
ing performing distance estimations in real time from motion
information received in real time.

[0022] FIG. 2 is a flowchart of an exemplary method 200
for the first phase 150. This phase involves acquiring training
data that will be used in the next phase to perform gait model
regression analysis. For example, the distance estimation sys-
tem 100 functions as a gait data collector to collect the train-
ing data. Method 200 begins at 202 with executing a gaitat a
specified approximate frequency. For example, in one
embodiment, a user will walk in a straight line while approxi-
mately taking one step every second. Further, frequency mod-
ule 110 determines the precise frequency of the user. Infor-
mation for other gait modes can also be collected. For
example, in one embodiment, training data is collected as a
user crawls in a straight line while completing a full cycle of
movements once every three seconds, or as a user shuffles
sideways or moves in another identifiable gait.

[0023] In certain embodiments, while a user executes the
gait, method 200 proceeds at 204 with memory 102 recording
the movement information while recording position informa-
tion relative to a fixed survey point. For example, a user wears
an IMU 112 that provides movement information indicating
motions taken by the user during the execution of a gait. Gait
information 107 in memory 102 stores the movement infor-
mation. While the movement information is collected, data
estimation system 100 records the test subject’s distance from
a fixed survey point. For example, in one embodiment, when
training data is acquired indoors or where GPS is unavailable,
a laser range finder is located at a known survey location. As
the user moves, the laser range finder generates information
about the user’s position in relation to the survey point and
transmits the generated information to distance estimation
system 100. In another embodiment, when the training data is
acquired outdoors or where GPS is available, differential GPS
signals are used to measure high resolution, high accuracy
trajectories for a user while they move. The distance to all of
the points along the trajectory are measured from the initial
reference location using differential GPS. After the move-
ment information and the position information are collected,
gait information 107 functions as a movement information
recorder and stores the motion information and the position
information in memory 102.

[0024] After gait information 107 stores the position and
movement information in memory 102, method 200 proceeds
at206 by aligning the movement information and the position
information with respect to time. Distance calculation mod-
ule 106 time-aligns the data by correlating the position infor-
mation and the movement information such that a movement
in the movement information and a position in the position
information correspond to the actual movement and position
of the user at a particular time instant. That is, distance cal-
culation module 106 retrieves the gate information 107 iden-
tifies measurement information data points and position data
points that correspond in time with each other. For example,
during the recording of the movement and the position of the
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user, if the user was taking his second step when at a position
of one meter, then the aligning correlates this information.
[0025] Method 200 proceeds at 208 with the segmenting of
the movement information into identifiable movements. The
phrase “identifiable movements,” as used herein, generally
refers to a recognizable segment of a gait cycle of a full gait
cycle. For example, when the user is walking, distance cal-
culation module 106 functions as a data segmentation module
and splits the movement information into identifiable move-
ments by separating the movement information into a series
of individual steps (for example, a series of data correspond-
ing to ten walking steps is split into ten individual series of
data, each corresponding to one walking step). Alternatively,
when the user is crawling, distance calculation module 106
divides the movement information into both a series of hand
movements and leg movements, each of which could com-
prise an identifiable movement.

[0026] After the movement information is segmented into
identifiable movements, method 200 proceeds at 210, with
storing the frequency, gait, and distance traveled for the iden-
tifiable movements into memory 102. Distance calculation
module 106 recognizes each identifiable movement and saves
into gait information 107 the frequency of the movements
during the period of time associated with the identifiable
movement, the distance the user traveled during the identified
movement, and the gait mode for the identifiable movement.
For example, if a person was taking one step every second,
traveled one meter per step, and was walking; distance cal-
culation module 106 stores in memory 102, a frequency of
one 1 Hz, a distance of one meter, and a gait mode of “walk-
ing”.

[0027] Repeating method 200 by having multiple users
perform method 200 multiple times for a plurality of gaits
provides training data for distance estimation system 100.
This training data provides the basis for the distance estima-
tion system 100 to perform a regression analysis for the
plurality of gaits. For example, an individual repeats method
200 for several different gaits including duck walking, walk-
ing, running, crawling, and the like. The individual also
repeats each gait at different frequencies. For instance, an
individual walks slowly at a frequency of 0.5 Hz, at a medium
pace of 1 Hz, and a brisk pace of 2 Hz. Furthermore, multiple
individuals representing a multiplicity of different body types
can repeat method 200 multiple times at multiple frequencies.
The training data representing multiple gaits executed at mul-
tiple frequencies by users with differing body types spans the
input the space. The training data should have sufficient
sample size in order to fulfill the required accuracy require-
ments of the regression analysis.

[0028] After the gait information 107 has been gathered,
the second phase 160 begins where distance calculation mod-
ule 106 creates a distance estimate model based on a regres-
sion analysis of the gathered gait information as represented
by the following equation:

d=g(m,f,b)

where the distance d is calculated as a function g of the gait
mode m, the frequency of the gait mode f, and the biometric
information b of the individual executing the gait. For a par-
ticular gait mode, such as walking, crawling, or shuffling, the
equation is represented by the following:

an=8n($:D)

The distance for a particular gait mode d,, is a function g,,, of
the frequency of the gait mode f and the biometric informa-
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tion b of the individual executing the gait. That is, distance
calculation module 106 creates the distance estimate model,
represented by functions gand g,,,. The specific forms of gand
g, depend on the regression analysis method employed that
may include global regression (for example, polynomial fit-
ting), as well as local regression, and local-adaptive regres-
sion.

[0029] In one embodiment, distance calculation module
106 creates the distance estimate model using the training
data gathered through method 200 represented by the follow-
ing equation:

(xp); =1, ..., n

where n is the number of gathered points in the training data,
and x is an input vector. The value y, is an output scalar
representing the known distance traveled for an identifiable
movement. The value y is approximated by:

y=t(x,w)+noise

where x is the input vector, y is the output scalar, t(x, w) is the
target function, w is a parameter vector, and the noise follow
aknown distribution. Since both the input x and the parameter
w can have more than one variable, we employ the vector
representations for x and w.

[0030] For example, in one embodiment, distance calcula-
tion module 106 creates the distance estimate model using a
linear model for a particular person and for a particular gait.
For example, the linear model represents a particular indi-
vidual using a walking gait. In an embodiment of a linear
model that does not depend on biometric information, the
target function for the distance estimate model is:

g =wotw *f

Distance calculation module 106 estimates the coefficient
values w, and w,, based on the available training data, to
achieve the smallest value of the error function. The coeffi-
cients are calculated using a least-squares formulation of the
regression problem and, as such, the w, and the w, are found
by minimizing the following cost function:

" eg(F)P

wherey, is the known distance traveled. Alternatively, instead
of minimizing the error represented by a least-squares cost
function, a least-modules loss minimizes the error.

[0031] In another embodiment, distance calculation mod-
ule 106 represents the distance estimate model as a quadratic
regression model. For example, distance calculation module
106 uses a quadratic regression model for a particular person
executing a particular gait which does not depend on biomet-
ric information. The following equation represents a qua-
dratic regression model:

&) =wotw, *f+w,* 52

Both the linear model and the quadratic model belong to a
family of polynomial approximations represented by the fol-
lowing equation:

U)o (wi* )

The target function is determined by solving for the coeffi-
cients w,, which can be computed in closed form using nor-
mal equations.

[0032] Ina further embodiment, distance calculation mod-
ule 106 creates a distance estimate model that applies to
multiple people. For example, distance calculation module
106 creates a distance estimate model that calculates the
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distance traveled as a function of frequency and as a function
of biometric information for a particular individual. By
including biometric information, the polynomial regression
for both frequency f and biometric information b is repre-
sented by either of the following equations:

Y=wotw 5w, 52wy %h
Y= worwy ¥, k2 pwy ¥ 4w, ¥

[0033] The distance estimate models represented with
polynomials are examples of global regression models. In a
global regression model, a set of coefficients {w,, w,, . . .,
w,,} is used to parameterize a polynomial that approximates
the full set of training data acquired in method 200.

[0034] In an alternative embodiment, distance calculation
module 106 creates the distance estimate model using a local
regression method, where the local regression method finds
different distance models to fit subsets of the information
gathered in method 200. In one embodiment for a local
regression method, distance calculation module 106 creates
the distance estimate model using a kernel-based method.
The distance estimate model uses a kernel method of the
following form:

F@ =) Kitx, x)y;

i=1

where the kernel function K,(x, x,) is a symmetric function
that satisfies the following properties:

K(x,x")Z0 Nonnegative
K(x,x")=K(|]x-x'||) Radially symmetric
K(x,x)=max Takes on its maximum when x=x’

lim,_,.K(#)=0 Monotonically decreasing with r=|x—x1|

[0035] In a further embodiment of a local regression
method, distance calculation module 106 includes a normal-
ization term in the kernel method. The addition of the nor-
malization term converts the kernel method to a Nadaraya-
Watson kernel regression model, as shown below:

DK ) Xi
f) = E nh(#yi
=1 > Kn(x, xj)
J=1

[0036] Alternatively, distance calculation module 106 cre-
ates the distance estimate model using a local adaptive
approach. In the local adaptive approach, for a given width
parameter o, the local empirical risk for the estimation point
X 18t

L
LoSStocat-adapiive @) = = » . Kox3, %0)(y; = f (51, ).
n i=1

For example, for a set of approximating functions f(x,
W, )=W,, the distance estimate model becomes a zero-order
model over the width. When the approximating function is a
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linear function, the distance estimate model is represented by
a series of piecewise linear functions. In the local adaptive
approach, for each kernel width, the input parameters are
based on a small subset of training data gathered in method
200 in the neighborhood of sample point x,,.

[0037] In certain embodiments, the regression analysis
used to perform the selection is chosen based on performance
requirements. For example, where there is limited processing
capability, distance estimation system 100 creates a distance
estimate model using linear regression. In contrast, in situa-
tions where auser desires precision in place of speed, distance
estimation system 100 creates a distance estimate model
using a local regression method. A cross validation method
can be used to select a regression model. In the cross valida-
tion method, a part of the training data is used to generate
different regression models, the rest of the training data is
then used as validation data to compare against the generated
regression models to determine which regression model pro-
vides the best performance.

[0038] After distance calculation module 106 completes
the second phase at 160 and develops a distance estimate
model for the training data acquired in method 200, distance
calculation module 106 is ready for the operational phase
170. In this phase, distance calculation module 106 uses the
distance estimate model to calculate the distance traveled by
a user without requiring further training data from a user.
Since the training data comprises data from a wide variety of
subjects executing various gaits and different frequencies,
additional users can use the trained models without having to
generate any training data of their own. For example, after the
gait models are computed an additional user employs dis-
tance calculation module 106 after pre-entering his biometric
information to calculate his distance traveled. A second user
then uses the same distance calculation module 106, by pre-
entering her biometric information, traveling, and calculating
her distance traveled. Both users employ distance estimation
system 100 without training distance calculation module 106
to their particular mode of movement.

[0039] FIG. 3 is a block diagram illustrating an exemplary
embodiment of a personal navigation system 300 implement-
ing distance estimation system 100. Personal navigation sys-
tem 300 includes a navigation processor 302, an IMU 308,
and a Kalman filter 306. IMU 308 includes a series of gyro-
scopes and accelerometers that measure the motion of per-
sonal navigation system 300. For example, IMU 308 includes
three mutually orthogonal linear accelerometers and three
mutually orthogonal gyroscopes that provide six channels of
data. As IMU 308 detects the motion of personal navigation
system 300, IMU 308 transmits the motion information to
navigation processor 302. Furthermore, the gait classification
module 304 executes continuously in parallel, to determine
when a step occurs so that a distance traveled estimate can be
computed. After each detected step, the distance estimation
system 100, in connection with a personal navigation system,
corrects errors that arise during the integration of the IMU
308 data. In a further embodiment, personal navigation sys-
tem 300 receives navigational information from aiding sen-
sors 316. Aiding sensors 316 includes a magnetic sensors
318, an altimeter 320, and a GPS 322. The aiding sensors 316
also provide corrective information to IMU 308.

[0040] Navigation processor 302 uses the motion informa-
tion received from IMU 308 to create a navigation solution.
The navigation solution contains information regarding posi-
tion, velocity, heading, and attitude. Navigation processor
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302 transmits the navigation solution and motion information
to a gait classification module 304. Furthermore, during
operation of personal navigation system 300, integration of
the IMU 308 noise and biases cause the navigation solution to
drift away from the true navigation solution. To correct the
“drift,” the navigation processor receives corrective data from
Kalman filter 306. Kalman filter 306 receives informationand
compensates for the errors that arise as a result of “drift”. For
instance, Kalman filter 306 computes corrections based on a
measurement of the distance traveled provided by the dis-
tance estimation system 100. Alternatively, Kalman filter 306
receives updating information from GPS, altimeters, mag-
netic sensors and the like.

[0041] FIG. 4 is a flowchart of an exemplary method 400
for updating Kalman filter 306 using the distance traveled
received from distance estimation system 100. Method 400
begins at 402 with navigation processor 302 receiving mea-
surements from IMU 308. For example, navigation processor
302 receives both acceleration and rotational velocity mea-
surements from IMU 308. Method 400 proceeds at 404 with
navigation processor 302 calculating a pose estimate based on
the integration of the inertial measurements received from
IMU 308.

[0042] Method 400 proceeds at 406 with Kalman filter 306
receiving a distance traveled from distance estimation system
100, as well as a covariance or measure of uncertainty for the
measured distance. Kalman filter 306 uses the distance trav-
eled to correct errors which will improve the accuracy and
reduce the uncertainty of the inertial-based pose estimate
from IMU 308. The inertial-based pose estimate is computed
at a high rate in order to obtain estimates for position, veloc-
ity, and attitude. In one embodiment the distance traveled is a
scalar measurement represented by:

d=h(g f,b)

which is the magnitude of the measured step (where g is the
gait, f is the frequency, and b represents biometric data). The
frequency estimate is obtained using “step-segmentation”,
where the frequency is computed as 1/(t_step_end_time-t_
step_starting time), based on the detected critical points in the
raw IMU data. The step-start and step-stop times are com-
puted using critical point detection on the raw signal received
from the IMU. FIG. 7 depicts generally at 700 an example
accelerometer signal recorded during a walking phase. The
step-start and step-stop times are computed using critical-
point detection on the raw signal. In another embodiment the
measurement is a vector expressing the difference in position
(or average velocity) of the step as compared to the previous
step represented by:

Ap=pipr_1=9(8.5.9.0)

where p, denotes the position of the sensing package at time
step k and ¢ represents the heading of personal navigation
system 300. Measurement updates are computed using stan-
dard extended Kalman filter update equations. For example,
pose estimates are updated using distance measurements in
an extended Kalman filter framework. To update the pose
estimates, a linearized measurement model is derived, the
Kalman gain is computed, and the corrections of the state
estimates are calculated along with an updated covariance.

[0043] FIG. 6 is a block diagram of a Kalman filter frame-
work 600 for updating the Kalman filter with distance esti-
mates. The Kalman filter framework 600 includes an IMU
602, a navigation processor 604, a Kalman filter 606, a step
partition 608, a gait classification 610, and a distance per step
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estimation 612. In Kalman filter framework 600, IMU 602
provides motion information to the both navigation processor
604 and step partition 608. Navigation processor 604 outputs
a navigation solution. Step partition 608 separates the motion
information received from IMU 602 into partitioned motion
information and transmits the partitioned motion information
to gait classification 610. Gait classification 610 classifies the
partitioned motion information into an identifiable gait and
transmits gait and frequency information to distance per step
estimation 612. Distance per step estimation 612 then uses the
gait information, the frequency and biometric information to
calculate a distance estimate. Distance per step estimation
612 then transmits the distance estimate to Kalman filter 606.
Kalman filter 606 derives a linearized measurement model by
computing the Jacobian, H with respect to the state of the
system, the Kalman gain K, and the corrections to the state
estimates along with an updated covariance. Kalman filter
606 uses the linearized measurement model to reset the navi-
gation processor 604 and correct errors that have developed
during operation.

[0044] Method 400 proceeds at step 408 with Kalman filter
306 validating the distance traveled. In most measurement
schemes, it is possible that the observed quantity either
belongs to the set of valid measurements (i.e., measurements
which admit a distribution around the true value), or the
measurement may be an outlier (i.e., a spurious value which
is unrelated to the true measured quantity). For this reason, an
outlier rejection step is performed to ensure that only valid
measurements are incorporated into the Kalman filter 306 as
updates. For example, Kalman filter 306 performs outlier
rejection by applying a statistical test to the distance traveled
measurement in order to determine the validity of the mea-
surement received from distance estimation system 100. In at
least one embodiment, the statistical test takes the form of a
Mahalanobis distance test which computes the probability
that the measurement residual error (that is, the difference
between the received measurement and the expected mea-
surement computed from the inertial-based pose estimate)
follows a chi-squared distribution, which corresponds to the
probability that the measurement is valid. While in other
instantiations, the statistical test can take a variety of other
forms. If the statistical test determines that the distance trav-
eled is valid, then method 400 proceeds at 410 with Kalman
filter 306 updating with the distance traveled. For instance,
after the distance traveled has passed the statistical test, then
a series of standard Kalman filter equations can use the dis-
tance traveled to update the estimate of an error state in
Kalman filter 306.

[0045] In one embodiment, where the distance traveled is
calculated using a gait model, navigation processor 302 trans-
mits a navigation solution and motion information received
from IMU 308 to a gait classification model 304. Distance
estimation system 100 receives data from gait classification
module 304 that aids distance estimation system 100 in cal-
culating the distance traveled. Gait classification module 304
includes a gait model library 310, a gait estimator 314, and a
frequency estimator 312.

[0046] FIG. 5 is a flowchart of exemplary method 500 for
classifying the gait mode based on information received from
IMU 308 and navigation processor 302. The method begins at
step 502 with gait classification module 304 receiving motion
information. For example, gait classification module 304
receives a navigation solution from navigation processor 302
and motion information transmitted by IMU 306. Also, clas-
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sification module 304 receives motion information associated
with a period of time. For example, gait classification module
304 receives motion information gathered during the previ-
ous two seconds. After gait classification module 304 receives
the motion information, method 500 proceeds at step 504
with gait classification module 304 computing a wavelet
transform for a previous time period. For example, gait esti-
mator 314 computes a wavelet transform for several periods
of time depending on the wavelet transform stored in gait
model library 310. In certain embodiments, where the time
period is one second, gait estimator 314 computes a wavelet
transform for the previous five one second periods.

[0047] After gait classification module 304 calculates a
wavelet transform for a previous time period, method 500
proceeds at 506 with gait classification module classitying
the gait mode, phase, and frequency. For example, gait esti-
mator 314 compares the information derived from the wavelet
transform against information stored in gait model library
310. Gaitestimator 314 classifies the gait mode by computing
the wavelet transform on the motion information received
from IMU 308. When the gait mode is classified, frequency
estimator 312 identifies a phase and frequency estimate for
the current IMU data. If gait estimator 314 is unable to iden-
tify a gait, gait estimator 314 fails to identify a gait mode for
the received information and gait classification module 304
will wait to receive additional motion information.

[0048] If gait estimator 314 identifies the gait, method 500
proceeds at 508 with gait classification module 304 segment-
ing the received motion information to obtain the frequency
of the gait. Knowledge of the specific frequency of a mea-
sured step increases the accuracy of the distance measure-
ment. For example, frequency estimator 312 computes the
frequency of the received signal using an FFT or other method
to calculate the frequency. The frequency calculation pro-
vides an initial resolution estimate of the gait frequency,
which is subsequently refined using the time-difference of
critical points for the current step. To further create a more
accurate gait model, method 500 proceeds at step 510 with
gait classification module 304 acquiring biometric data about
a particular user of personal navigation system 300. For
example, gait classification module 304 receives biometric
information from a user, or receives stored biometric infor-
mation. The addition of the biometric data into the model
allows for the creation of gait models that describe the gait
motions of a plurality of users.

[0049] After gathering the biometric data, method 500 pro-
ceeds at 512 with gait classification module 304 transmitting
the gait mode, phase, frequency, and biometrics to distance
estimation system 100. Distance estimation system 100 then
calculates the distance traveled and transmits the distance
traveled to Kalman filter 306. Alternatively, distance estima-
tion system 100 combines the distance traveled with a head-
ing direction and then transmits the distance traveled along
with the heading information to Kalman filter 306 as a delta
position update. Kalman filter 306 uses the distance traveled
to correct errors that occur during the operation of IMU 308.
[0050] Although the system described above is a personal
navigation system used to calculate a navigation solution,
distance calculation module 106 can be implemented in other
systems. For example, in other embodiments, distance calcu-
lation module 106 is implemented in a health and behavior
monitoring system. In particular, within the medical field it is
important to understand and develop models for how people
move. Such models can benefit a wide variety of tasks such as
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detection and monitoring of physical disorders, as well as
evaluating early childhood locomotion. For example, by
quantifying each child’s motion over time using a system
such as distance estimation system 100, it can be determined
how much time each child in a group of children spends in
different crawling modes, as well as walking modes. Such
data could be used to increase our understanding of early
childhood development, allowing researchers to study factors
which impact physical development and/or physical disor-
ders.

[0051] Several means are available to implement the sys-
tems and methods of the current invention as discussed in this
specification. These means include, but are not limited to,
digital computer systems, microprocessors, general purpose
computers, programmable controllers and field program-
mable gate arrays (FPGAs) or application-specific integrated
circuits (ASICs). Therefore other embodiments of the present
invention are program instructions resident on computer
readable media which when implemented by such means
enable them to implement embodiments of the present inven-
tion. Computer readable media include any form ofa physical
computer memory storage device. Examples of such a physi-
cal computer memory device include, but is not limited to,
punch cards, magnetic disks or tapes, optical data storage
system, flash read only memory (ROM), non-volatile ROM,
programmable ROM (PROM), erasable-programmable
ROM (E-PROM), random access memory (RAM), or any
other form of permanent, semi-permanent, or temporary
memory storage system or device. Program instructions
include, but are not limited to computer-executable instruc-
tions executed by computer system processors and hardware
description languages such as Very High Speed Integrated
Circuit (VHSIC) Hardware Description Language (VHDL).
[0052] This description is presented for purposes of illus-
tration, and is not intended to be exhaustive or limited to the
embodiments disclosed. Variations and modifications may
occur, which fall within the scope of the following claims. For
example, the embodiments above relate to a personal naviga-
tion system, but it is understood that any variation or species
of system using a distance estimate can utilize the described
invention. Furthermore, some of the components described
below may be implemented using either digital or analog
circuitry, or a combination of both.

What is claimed is:

1. A distance estimation system, the system comprising:

a gait information memory configured to store gait infor-
mation about a gait mode;

a biometric data memory configured to store a biometric
profile for a user;

a frequency module configured to identify a gait frequency;
and

a distance calculation module configured to calculate the
distance traveled by the user by creating a distance esti-
mate model based on the gait mode, the biometric pro-
file, and the gait frequency, wherein the distance calcu-
lation module creates the distance estimate model by
performing a regression analysis on movement informa-
tion from at least one user.

2. The system of claim 1, further comprising:

an inertial measurement unit configured to sense motion of
auser and to output to the frequency module one or more
channels of inertial motion data corresponding to the
sensed motion; and
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a Kalman filter configured to provide correction informa-
tion for the inertial measurement unit.

3. The system of claim 2, further comprising at least one
aiding sensor providing an output to the frequency module,
including at least one of:

a GPS antenna configured to output position updates;

a magnetometer configured to provide true north orienta-

tion of the sensor package; or

an altimeter.

4. The system of claim 2, wherein the distance calculation
module transmits the distance traveled to the Kalman filter,
wherein the Kalman filter uses the distance traveled to esti-
mate the correction information.

5. The system of claim 1, further comprising a gait classi-
fication module configured to determine the gait mode for the
user.

6. The system of claim 4, wherein the gait classification
module is configured to:

calculate a coefficient vector for motion information
received from an inertial measurement unit based on a
wavelet transformation of the motion information; and

select one of a plurality of gaits as the gait mode based on
the coefficient vector and on a plurality of gait models,
wherein each gait model corresponds to one of a plural-
ity of gaits.

7. The system of claim 1, wherein the regression analysis

comprises at least one of:

a global regression method; and

a local regression method.

8. The system of claim 1, wherein the biometric data com-
prises at least one of:

auser’s height;

auser’s arm length;

auser’s gender;

a user’s thigh length;

a user’s weight; and

auser’s leg length.

9. An inertial measurement unit correction system, the
device comprising:

a gait data collector configured to collect ground truth data

about a gait mode;

a gait classification module configured to identity the gait
mode and a gait frequency;

a distance calculation module configured to calculate a
distance traveled using a regression analysis on the
ground truth data, the gait mode, and the gait frequency;
and

an inertial measurement unit corrector configured to cor-
rect errors in a inertial measurement unit using the dis-
tance traveled.

10. The system of claim 9, wherein the gait data collector

comprises:

a movement information recorder configured to store
motion information and position information of at least
one individual,

a data aligner configured to align the movement informa-
tion and the position information with respect to time;

a data segmenter configured to segment the movement
information into identifiable movements; and

gait information stored in a memory that is configured to
store the gait frequency and distance traveled data for the
identifiable movements.

11. The system of claim 9, wherein the gait data collector

collects ground truth data for at least one of:
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a plurality of different users;

a plurality of different frequencies; and

a plurality of different gaits.

12. The system of claim 9, wherein the regression analysis

comprises at least one of:

a global regression method; and

a local regression method.

13. The system of claim 9, wherein the gait classification

module comprises:

a frequency estimator configured to estimate the frequency
of a gait based on motion information received from the
inertial measurement unit;

a gait estimator configured to identify a gait mode based on
a wavelet transform of the motion information; and

a gait model library configured to store gait mode informa-
tion.

14. The system of claim 13, wherein the gait mode infor-

mation comprises at least one of:

a gait mode;

a gait phase; and

a gait frequency.

15. The system of claim 13, further comprising a biometric

data storage configured to store information about a user.

16. The system of claim 9, wherein the inertial measure-

ment unit corrector comprises:

a navigation processor configured to receive motion infor-
mation from the inertial measurement unit;

a distance estimation system configured to calculate the
distance traveled by a user; and

a Kalman filter configured to validate the distance traveled
received from the distance estimator system and update
the inertial measurement unit using the distance trav-
eled.

17. A system for providing personal navigation, the system

comprising:
an inertial measurement unit configured to sense motion of
an individual and to output one or more channels of
inertial motion data corresponding to sensed motion;
a Kalman filter configured to correct errors that arise dur-
ing operation of the inertial measurement unit;
a gait classification module configured to identify a gait
executed by the individual based on the inertial motion
data received from the one or more channels;
a frequency module configured to identify a frequency for
the gait executed by the individual based on the inertial
motion data received from the one or more channels; and
a distance estimation module configured to
create a distance estimate model by applying a regres-
sion analysis to training data gathered from a plurality
of users, where the distance estimate model describes
the motion of the plurality of users;

estimate a distance traveled by an individual based on
the distance estimate model, the gait, and the fre-
quency; and

transmit the distance traveled to the Kalman filter to
update the Kalman filter.

18. The system of claim 17, wherein the gait classification

module is configured to:

calculate a coefficient vector for motion information
received from the inertial measurement unit based on a
wavelet transformation of the motion information; and
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select one of a plurality of gaits as the gait mode based on
the coefficient vector and on a plurality of gait models,
wherein each gait model corresponds to one of a plural-
ity of gaits.
19. The system of claim 17, wherein the regression analysis
comprises at least one of:
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a local regression analysis; and

a global regression analysis.

20. The system of claim 17, wherein the distance estima-
tion module further estimates the distance traveled based on
biometric information for a user.
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