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SYSTEMAND METHOD FOR 
WAVELET-BASED GAT CLASSIFICATION 

BACKGROUND 

Personal navigation systems have received attention from 
both the industrial and academic research communities in 
recent years. Numerous target applications have been pro 
posed, including localization for members of a team of fire 
fighters, first responders, and Soldiers. In these applications, 
the safety and efficiency of the entire team depends on the 
availability of accurate position and orientation (pose) esti 
mates of each team member. While the team is operating 
within the coverage area of GPS satellites, each person's pose 
can be reliably estimated. However, a far more challenging 15 
scenario occurs when the team is inside a building, in an urban 
canyon, or under a forest canopy. In these cases, GPS-based 
global localization is not sufficiently accurate or may be 
completely unavailable, and pose estimation must be accom 
plished through secondary means. One popular approach is to 
equip each person with a body-mounted Strap-down Inertial 
Measurement Unit (IMU) typically comprising three accel 
erometers and three gyroscopes in orthogonal triads, which 
measure the person’s motion. To mitigate the drift errors in 
strap-down inertial navigation, conventional systems typi 
cally include aiding sensors, such as a camera or laser scanner 
which sense the color, texture, or geometry of the environ 
ment. Each person's pose can then be estimated individually 
by fusing the available sensing information. 

10 

25 

30 

SUMMARY 

In one embodiment, a motion classification system is pro 
vided. The motion classification system comprises an inertial 
measurement unit configured to sense motion of a user and to 
output one or more channels of inertial motion data corre 
sponding to the sensed motion; and a processing unit config 
ured to calculate a coefficient vector for each of the one or 
more channels based on a wavelet transformation of the 
respective inertial motion data, and to select one of a plurality 
of gaits as the user's gait based on the calculated coefficient 
vector of at least one of the one or more channels and on a 
plurality oftemplates, each template corresponding to one of 
the plurality of gaits. 
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45 

DRAWINGS 

Understanding that the drawings depict only exemplary 
embodiments and are not therefore to be considered limiting 
in scope, the exemplary embodiments will be described with 
additional specificity and detail through the use of the accom 
panying drawings, in which: 

FIG. 1 is a block diagram depicting one embodiment of a 
personal navigation system. 

FIG. 2 is an exemplary diagram of a single channel of 55 
inertial motion data. 

FIG. 3 is an exemplary diagram of a wavelet transform. 
FIG. 4 is flow chart depicting one embodiment of a method 

for computing and storing the wavelet coefficient vectors. 
FIG. 5 is a flow chart of one embodiment of a method of 60 

generating templates for motion classification. 
FIG. 6 is a flow chart of one embodiment of a method of 

identifying a user's gait. 
In accordance with common practice, the various 

described features are not drawn to scale but are drawn to 65 
emphasize specific features relevant to the exemplary 
embodiments. 

50 

2 
DETAILED DESCRIPTION 

In the following detailed description, reference is made to 
the accompanying drawings that form a part hereof, and in 
which is shown by way of illustration specific illustrative 
embodiments. However, it is to be understood that other 
embodiments may be utilized and that logical, mechanical, 
and electrical changes may be made. Furthermore, the 
method presented in the drawing figures and the specification 
is not to be construed as limiting the order in which the 
individual acts may be performed. The following detailed 
description is, therefore, not to be taken in a limiting sense. 

FIG. 1 is a block diagram of one embodiment of a personal 
navigation system 100 worn by a user. System 100 includes 
an IMU 102 configured to provide data regarding the motion 
of the user wearing the personal navigation system 100. For 
example, in this embodiment, the IMU 102 includes three 
mutually orthogonal linear accelerometers and three mutu 
ally orthogonal gyroscopes to provide six channels of data. 
The IMU102 provides the inertial motion data to a processing 
unit 104. In some embodiments of the personal navigation 
system 100, the IMU is implemented as a Microelectrome 
chanical system (MEMS) based inertial measurement unit, 
such as a Honeywell BG1930 MEMS inertial measurement 
unit. 
The processing unit 104 implements wavelet motion clas 

sification functionality 106, Kalman filter functionality 108, 
and inertial navigation functionality 110. The inertial naviga 
tion functionality 110 calculates a navigation solution includ 
ing heading, speed, position, etc., based on the inertial motion 
data received from the IMU 102 using techniques known to 
one of skill in the art. 
The wavelet motion classification functionality 106 per 

forms a wavelet transform on at least one of the six channels 
of inertial motion data from the IMU102 to obtain at least one 
wavelet transform. The wavelet motion classification func 
tionality 106 then compares the wavelet transforms to a plu 
rality of gait templates 116 stored in memory 114. The wave 
let motion classification functionality 106 identifies the 
template which most closely matches the at least one wavelet 
obtained from the received inertial motion data based on a 
statistical analysis. Each gait template 116 corresponds to a 
particular user gait, frequency, and phase. As used herein, the 
terms “gait” and “gait mode” refer to the pattern of movement 
of the user's limbs while moving from one location to 
another. Thus, each gait mode is comprised of a pattern of 
repetitive motions. Exemplary gait modes include, but are not 
limited to, level walking, stair ascending/descending, side 
shuffle walking, duck (firefighter) walking, hand-and-knee 
crawling, military (elbow) crawling, jogging, running, and 
sprinting. In addition, in Some embodiments, a “no-model 
hypothesis is stored in memory 114. The “no-model hypoth 
esis is a default hypothesis that covers the instances when the 
executed motion, as represented by the wavelet, does not 
match any of the stored gait templates 116. 
The terms “frequency” and gait frequency” refer to how 

quickly the corresponding motion is repeated. For example, 
the frequency of level walking refers to how quickly each step 
is repeated. The terms “phase' and gait phase' refer to the 
shift in the starting position of the repetitive motion. For 
example, measurement of a step in the level walking gait 
mode can be started while one of the user's feet is passing the 
other (i.e., during Swing phase), or with one foot in front of the 
other, etc. 

After identifying the user's gait mode, the wavelet motion 
classification functionality 106 calculates a distance-traveled 
estimate based on the identified type of motion or gait mode. 
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Additional details regarding operation of the wavelet motion 
classification functionality 106 are described below. The dis 
tance-traveled estimate is output to the Kalman filter func 
tionality 108. 

In some embodiments, the system 100 also includes one or 
more aiding sensors 112 which provide additional motion 
data to the Kalman filter functionality 108. The Kalman filter 
functionality 108 calculates corrections to the navigation 
solution based on the distance-traveled estimate received 
from the wavelet motion classification functionality 106 and, 
optionally, on motion data received from the aiding sensors 
112 if available, as described in more detail below. In the 
exemplary embodiment shown in FIG. 1, the optional aiding 
sensors 112 include one or more magnetic sensors 34, one or 
more pressure sensors or altimeters 36, and one or more 
global positioning satellite (GPS) receivers 38. 
The corrections from the Kalman filter functionality 108 

are provided to the inertial navigation functionality 110. In 
addition, in some embodiments, corrections to the distance 
traveled estimate are provided from the Kalman filter func 
tionality 108 to the wavelet motion classification functional 
ity 106. 
The processing unit 104 includes or functions with soft 

ware programs, firmware or other computer readable instruc 
tions for carrying out various methods, process tasks, calcu 
lations, and control functions, used in the implementing the 
functionality described above. 

These instructions are typically stored on any appropriate 
computer readable medium used for storage of computer 
readable instructions or data structures. The computer read 
able medium can be implemented as any available media that 
can be accessed by a general purpose or special purpose 
computer or processor, or any programmable logic device. 
Suitable processor-readable media may include storage or 
memory media Such as magnetic or optical media. For 
example, storage or memory media may include conventional 
hard disks, Compact Disk Read Only Memory (CD-ROM), 
Volatile or non-volatile media Such as Random Access 
Memory (RAM) (including, but not limited to, Synchronous 
Dynamic Random Access Memory (SDRAM), Double Data 
Rate (DDR) RAM, RAMBUS Dynamic RAM (RDRAM), 
Static RAM (SRAM), etc.), Read Only Memory (ROM), 
Electrically Erasable Programmable ROM (EEPROM), and 
flash memory, etc. Suitable processor-readable media may 
also include transmission media Such as electrical, electro 
magnetic, or digital signals, conveyed via a communication 
medium such as a network and/or a wireless link. 

In the exemplary embodiment shown in FIG. 1, the pro 
cessing unit 104 executes inertial navigation instructions 111 
stored on a memory 114 in implementing the inertial naviga 
tion functionality 110. Similarly, the processing unit 104 
executes wavelet motion classification instructions 107 and 
Kalman filter instructions 109, also stored on memory 114 in 
this example, in implementing the wavelet motion classifica 
tion functionality 106 and the Kalman filter functionality 108, 
respectively. 
The Kalman filter functionality 108 outputs Kalman filter 

corrections as discussed above. In one implementation, the 
Kalman filter functionality 108 also pre-processes and/or pre 
filters the input to the Kalman filter prior to calculating the 
corrections. As described above, the wavelet motion classifi 
cation functionality 106 identifies the gait of the user to which 
the personal navigation system 100 is strapped. The gait is 
identified based on the received inertial data from the IMU 
102. In particular, the wavelet motion classification function 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
ality 106 performs a wavelet transform on each of the six 
channels of the received inertial motion data from the IMU 
102 in this example. 

Prior to performing the wavelet transform on a channel, the 
wavelet motion classification functionality 106 optionally 
partitions or segments the channel data into one cycle of the 
repetitive motion. In particular, during a training phase or 
mode, described in more detail below, the channel data is 
partitioned. However, during an identification phase or mode, 
explained in more detail below, the channel data is optionally 
partitioned. For example, the channel data can be partitioned 
intermittently if verification of the detected frequency is 
desired. 
The channel data is segmented to represent a single step for 

gait modes related to walking or running For purposes of 
explanation, the cycle of repetitive motion is generally 
referred to herein as a “step' although it may refer to motions 
of parts of the body other than the legs, such as the arms or 
torso in a military crawl. The channel data can be segmented 
based on one or more of a plurality oftechniques, such as peak 
detection, Valley detection, or Zero crossing. For example, 
FIG. 2 represents exemplary data for a single channel. A 
single step can be identified by segmenting the data from peak 
to peak, where the peaks are represented by an asterisk (*). 
Alternatively, the step can be identified by segmenting the 
data from valley to valley, where a valley is represented by an 
open circle (0). Additionally, the step can be segmented from 
Zero crossing to Zero crossing, where the Zero crossing is 
represented as an open square (D) in FIG. 2. 
As can be ascertained from FIG. 2, the technique used to 

segment the inertial motion data depends on the IMU signal. 
For example, in the exemplary data shown in FIG.2, segment 
ing the steps based on Valleys rather than peaks yields more 
accurate results. This is due to the many false peaks in the 
signal which are not the desired peaks for segmenting the 
steps. 

In addition, in Some embodiments an average step for a 
channel is calculated based on the segmented Steps for the 
respective channel. For example, the data in FIG. 2 can be 
segmented into a plurality of steps using one of the techniques 
discussed above. The multiple segmented Steps are then com 
bined to form a single average step. After calculating the 
average step or selecting a representative actual step from the 
data, the wavelet motion classification functionality 106 then 
performs a wavelet transform on the step data. 
An exemplary wavelet transform is represented in FIG. 3. 

As shown in FIG. 3, a wavelet transform involves approxi 
mating the input signal (which represents a step in the channel 
data) as a finite expansion over basis signals using techniques 
known to one of skill in the art. The finite expansion is an 
approximation of the infinite expansion of the input signal. 
The finite expansion can be expressed mathematically by the 
following equation: 

In the above equation, c1, c2, and c3 are expansion coeffi 
cients that define the finite expansion for a given channel. 
Thus, the signal approximated by the finite expansion can be 
represented by a coefficient vector containing the expansion 
coefficients. By comparing the coefficient vectors of each of 
the plurality of channels representing a step in the measured 
inertial motion data to corresponding coefficient vectors of 
known gait templates, the wavelet motion classification func 
tionality 106 is able to identify the gait of the measured step. 
That is, based on a statistical analysis, the gait template which 
most closely matches the coefficient vectors is identified as 
the gait of the measured step. 
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It is to be understood that the data in FIGS. 2 and 3 is 
provided by way of example. In particular, actual data will 
depend, for example, on the particular user, the gait mode, 
gait frequency, gait phase, and channel of inertial motion data. 
One embodiment of a wavelet transform method 400 is 

shown in FIG. 4. In one instantiation of the wavelet transfor 
mation method 400, input from one of the up to six input 
channels of IMU data is received at block 402. Using tech 
niques known to one of skill in the art, a full wavelet trans 
formation is computed at block 404 using one of a selected 
wavelet type (e.g., Haar, Daubechies, etc.). At block 406, 
noise is removed and the dimensionality of the data is 
decreased by keeping only a selected number, N., of the largest 
coefficients. At block 408, in order to normalize for the effect 
of scale between IMU data channels, each wavelet coefficient 
vector is converted into a unit-length vector with the same 
direction. 

Returning to FIG. 1, in Some embodiments, the gait tem 
plates 116 are loaded onto the memory 114 based on previous 
empirical studies. In other embodiments, the wavelet motion 
classification functionality 106 is configured to operate in a 
training mode to generate the gait templates 116. Thus, in 
Some embodiments, the wavelet motion classification func 
tionality 106 is configured with two modes of operation: a 
training mode and an identification mode. The training mode 
is used to generate the gait templates 116 based on samples of 
one or more known gaits. An exemplary method of generating 
the gait templates in the training mode is described in more 
detail below with respect to FIG. 4. The identification mode is 
used to match a sample of an unknown gait to one of the gait 
templates 116 as described above. An exemplary method of 
identifying a user's gait in the identification mode is 
described in more detail below with respect to FIG. 5. 

After identifying the gait mode of an unknown step, the 
wavelet motion classification functionality 106 is able to cal 
culate a distance-traveled estimate. In particular, each gait 
template 116 is associated with a particular gait, frequency, 
and phase. Thus, by matching the unknown step to a gait 
template 116, the associated data for each gait template can be 
used to calculate the distance-traveled estimate. In some 
embodiments, the distance-traveled estimate is provided to 
the Kalman filter functionality 108 as a measurement update 
for the displacement between two consecutive positions: the 
person's position at the start of the step, and the person’s 
position at the end of the step. In this instance, the distance 
traveled estimate is first validated using a chi-squared 
residual test to ensure that spurious measurements are not 
processed by the Kalman filter functionality 108. It is to be 
understood that other techniques can be used in other embodi 
ments, to calculate the distance-traveled estimate based on 
the identified gait mode. In addition, in other embodiments, 
the distance-traveled estimate can be input into the Kalman 
filter functionality 108 to be used in calculating corrections to 
other states in the navigation Solution (e.g., instantaneous 
velocity). However, if the unknown step belongs to the no 
model hypothesis discussed above, then no distance-traveled 
estimate is transmitted to the Kalman filter functionality 108 
in Some implementations. 
As discussed above, the system 100 also optionally 

includes one or more aiding sensors 112. Data from the aiding 
sensors 112 is also input to the Kalman filter for use in 
calculating corrections to the navigation solution. For 
example, the magnetic sensors 34 are available to initialize 
the heading estimate as well as to provide heading informa 
tion for the personal navigation system 100 during operation. 
In one example, the data from the magnetic sensors 34 is used 
to determine the person's direction of travel. For example, in 
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6 
Some embodiments, the magnetic sensors 34 consist of three 
magnetic sensors mounted orthogonally. The processing unit 
104 calculates a distance-traveled estimate and direction of 
travel based on the frequency of step available from the wave 
let motion classification functionality 106, along with the 
heading of the steps as measured by the magnetic sensors 34. 

In this example, the altimeters 36 infer additional informa 
tion about the user's state. In this case, barometric altimeter 
altitude measurements are processed by the processing unit 
104 to measure the user's elevation. The sequence of eleva 
tion measurements is correlated with a database of terrain 
elevation maps to form position errorestimates. Position drift 
distorts the relative spacing between elevation measurements. 
The processing unit 104 predicts terrain correlation position 
to fix the accuracy of the location. The terrain correlation is 
predicted as a function of slope change, sensor noise, and 
distance traveled. In one implementation of this embodiment, 
the grid size of a map is constant. In addition, in some 
embodiments, the terrain correlation is used to offset for 
changes in the step length associated with an identified gait of 
the user when going up or down a slope. 

In addition, the system 100, in this example, incorporates 
the information gathered from the GPS sensor 38 or other 
radio frequency positioning aids to obtain accurate geo 
graphic location and distance traveled information. GPS pro 
vides Superior position and distance traveled information as 
compared to conventional inertial navigation systems. The 
personal navigation system 100 uses the GPS sensor 38 to 
acquire an initial position estimate. The Kalman filter func 
tionality 108 is configured to use data input from the GPS 
sensor 38 in addition to the distance-traveled estimates from 
the wavelet motion classification functionality 106 to calcu 
late updates to the navigation solution. However, GPS, and 
other RF location aids, are not always available because of 
satellite or transmitter outages, obstacles to radio-signal 
transmission, and so forth. In some Such cases, the personal 
navigation system 100 relies on the wavelet motion classifi 
cation functionality 106 to estimate the individuals distance 
traveled as an aid to the inertial navigation processing block 
via the Kalman filter. 

Although the system described above is a personal naviga 
tion system used to calculate a navigation solution, the wave 
let motion classification functionality 106 can be imple 
mented in other systems. For example, in other embodiments, 
the wavelet motion classification functionality 106 is imple 
mented in a health and behavior monitoring system. In par 
ticular, within the medical field it is important to understand 
and develop models for how people move. Such models can 
benefit a wide variety of tasks such as detection and monitor 
ing of physical disorders, as well as evaluating early child 
hood locomotion. For example, by quantifying each child’s 
motion over time using a system such as system 100, it can be 
determined how much time each child in a group of children 
spends in different crawling modes, as well as walking 
modes. Such data could be used to increase our understanding 
of early childhood development, allowing researchers to 
study factors which impact physical development and/or 
physical disorders. 

FIG.5 is a block diagram of the training phase method 500, 
which is employed for generating templates for motion clas 
sification. Method 500 can be implemented by wavelet 
motion classification functionality 106 described above. At 
block 502, inertial motion data for one or more data channels 
is received as described above. In particular, in this embodi 
ment, data from six channels is received. At block 504, the 
known gait mode, frequency and phase corresponding to the 
inertial motion data is received. At block 506, the inertial 
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motion data for each received data channels is segmented. 
That is, cycles of the repetitive motions or steps are identified 
and separated. In some embodiments, segmenting the data 
includes calculating an average step computed from the indi 
vidual steps that are segmented as discussed above. 

At block 508, a wavelet transformation is performed on 
each of the received data channels, as described above, to 
calculate a coefficient vector. In some embodiments, the coef 
ficient vector for each channel is correlated with the known 
gait, frequency, and phase and saved as a gait template. For 
example, in Some embodiments, data is collected from each 
channel for each of a plurality of users. Eachuser is monitored 
while moving using each of the different gait modes to obtain 
ground truth. In addition, each user repeats each gait mode at 
different frequencies, and the collected data is shifted to 
obtain examples at different phases. Thus, in some embodi 
ments, a template is stored corresponding to gait mode, fre 
quency, and phase for each channel of data from each user. 
When data for a plurality of channels is received at block 

502, a subset of the plurality of channels is optionally selected 
at block 510. In other words, rather than using the data from 
all of the plurality of channels, a smaller subset of the plurality 
of channels is selected. By using a Subset containing less than 
the total number of channels, processing of the data can be 
sped up to reduce the time and system requirements needed to 
generate the corresponding templates. In particular, rather 
than storing or using the coefficient vectors for each gait 
mode, frequency and phase for each channel, only the coef 
ficient vectors for the selected subset of channels are used 
and/or stored. Selecting the subset of channels is also referred 
to herein as “feature selection'. As used herein, the term 
“feature’ refers to a channel of data from the IMU 102. 

For example, in this embodiment, a forward feature selec 
tion method is used to select the subset of channels. The 
forward feature selection starts with the simplest model using 
just one feature (e.g., one channel among the six channels), 
and then sequentially adds more features one at a time. The 
addition of another feature is accepted only if the addition 
produces a model that results in a statistically significant 
decrease in the value of the loss function. 
The loss function is defined for two scenarios in this 

embodiment. The first scenario is defined by the motion class 
classification and the frequency estimation. The second sce 
nario is defined by the motion class classification and the 
phase estimation. The major component in the loss function is 
for the motion classification. That is, if the motion classifica 
tion result for a test data is wrong, then the loss function for 
that test data is 1 and the frequency estimation and phase 
estimation are not needed or calculated. However, if the 
motion classification result for a test data is correct, then 
frequency loss or phase loss is added, in some embodiments, 
to see the models performance in more detail. 

For the first scenario, if the motion class estimated from a 
given feature is equal to the actual motion class, then the 
frequency loss function, La is defined by the following equa 
t1On: 

L-L (f.e. f.), where f is the estimated frequency and 
f is the true or actual frequency. For example, the loss 
function L, can be the L1-norm or L2-norm of the difference 
between f, and f. 

If the motion class estimated from a given feature is not 
equal to the actual motion class, then the frequency loss 
function, La is assigned the value 1. 

Similarly, for the second scenario, if the motion class esti 
mated from a given feature is equal to the actual motion class, 
then the phase loss function, L, the following equation: 
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8 
Le-Le(Pest-Prue), 

where P is the estimated phase and P is the true or actual 
phase. 

If the motion class estimated from the given feature is not 
equal to the actual motion class, then the phase loss function, 
L. is assigned the value 1. In both scenarios, the estimated 
frequency and phase are determined by analyzing the seg 
mented steps. The ground truth (i.e. labeled data) for the gait 
mode, frequency, and phase of each example step can be 
obtained using various techniques. For example, in one 
embodiment, expert knowledge of an experiment moderator 
can be used to label the portions of data which correspond to 
each gait. In other embodiments, the ground truth for the 
frequency is obtained by computing the frequency domain 
(e.g., via fast Fourier transform) of the input signal and deter 
mine the dominant step frequency. In some embodiments, the 
ground truth for the phase is obtained by manually selecting 
a starting signal location for each gait mode and manually 
fixing this location to be the “Zero-phase' location. 
When in the training mode, the actual motion class (gait 

mode), frequency, and phase are known. Thus, the estimated 
motion class, phase, and frequency can be compared to the 
actual motion class, frequency, and phase to calculate values 
for the loss functions. Exemplary values of the frequency and 
phase loss functions are shown in Table 1 (a) below. In Table 
1(a), W X, w y and w Z represent the channel corresponding 
to the three gyros measuring angular motion about the X, y, 
and Z axes, respectively. In Table 1 (a) a X, a y, and a Z 
represent the channel corresponding to the three accelerom 
eters measuring linear motion along the x, y, and Z axes, 
respectively. 

spite 

TABLE 1(a) 
Loss function using 

motion class 
classification and 

frequency estimation 

Loss function using 
motion class 

classification and 
phase estimation 

W X O.6728 O. 6654 
w y O.1626 O.1269 
W Z. O.2723 O.2346 
a X O.2740 O.23O8 
a y O.O949 O.OSOO 
8 Z. O.O592 O.O808 

In the exemplary data for a duck walk gait in Table 1 (a), the 
a Z channel has the Smallest loss function values using the 
motion class and frequency loss function, and thea y chan 
nel has the Smallest loss function value using motion class 
and phase loss function. In this example, the a Z channel is 
first selected as the simplest model. Exemplary values of the 
loss functions resulting from the combination of the a Z, chan 
nel data with the other channels are shown in Table 1(b). 

TABLE 1(b) 
Loss function using 

motion class 
classification and 

frequency estimation 

LOSS function using 
motion class 

classification and 
phase estimation 

a Z - W X O42O3 O4346 
a Z + w y O.1269 O.O846 
a Z + W. Z. O.1645 O.1.192 
8 Z - a X O.O908 O.O385 
a Z + a y O.O592 O.O115 

As shown in Table 1 (b) the combination of the a Z and a y 
channels results in the smallest loss function. To determine if 
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the addition of another channel results in a statistically sig 
nificant difference, the F-test, known to one of skill in the art, 
is used. The F-test has an F-distribution of loss function 
values under the null hypothesis. The null hypothesis is that 
the additional channel will not result in a statistically signifi 
cant difference. The null hypothesis is rejected if the value of 
F calculated from the combined data is greater than the criti 
cal value of the F distribution for some desired false-rejection 
probability. For example, the critical value can be set to cor 
respond to a 5% significance level. 
The F-distribution is a family of continuous distributions 

indexed by two parameters known as the degrees of freedom. 
The degrees of freedom are defined as m for the first model, 
and m for the second model, and n is the total number of 
samples for all the channels. For example, in determining if 
the combination of a Z, and a y provides a statistically sig 
nificant reduction in the loss function, the value of m is the 
degree of freedom for using the a Z, channel, and m is the 
degree of freedom for using the combined a Z and a y chan 
nels. The equation for determining the F value is defined as: 

(ff.) m2 - in 

't 
In the above equation, L is the loss function of the first 

model, L is the loss function of the second model. For 
example, the first model can be from using one channel of 
IMU data. The second model can be obtained from using two 
channels of IMU data representing, for example, the values of 
the loss functions for the combination of the two channels. 

Therefore, the null hypothesis that the additional channel 
will not result in a significant reduction in the loss function is 
rejected if the calculated F value is greater than the critical 
value. When the null hypothesis is rejected, the additional 
channel is included. The addition of channels continues until 
the calculation of the F value does not result in a value that 
exceeds the critical value. By performing this analysis for 
each gait mode based on the training data, the relevant chan 
nels for each gait mode can be selected. For example, for the 
duck walking gait mode in this exemplary implementation, 
the results of selected Subsets of channels are channel a Z. 
channel a y, and channel a X. 

It is to be understood that the values in Tables 1(a) and 1(b) 
are provided by way of example and that the values may vary 
depending on the inertial motion data gathered. In addition, 
although the F-test is used in this example to select a subset of 
channels, it is to be understood that other statistical tests can 
be used in other embodiments to select a subset of channels. 

At block 512, a template model for each gait is optionally 
generated. The template model captures the distribution of 
templates for a given gait. In other words, a single template 
model is used for each gait rather than having a plurality of 
templates for each user, frequency and mode associated with 
a given gait. In this embodiment, a one class Support Vector 
Machine (SVM) with Radial Basis Function (RBF) as the 
kernel is used to capture the distribution of templates for 
different users into a single template model for each gait. 
The calculation of each gait template model only uses the 

training data belonging to the particular gait. For example, the 
walking gait template model only uses the walking data to 
build the walking gait template model. Thus, the one class 
SVM with RBF captures the distribution of the training data 
for a particular gait. The one class SVM can use all the 
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10 
channels of the IMU data. Also when the feature selection at 
block 510 is used, the one class SVM only uses the data from 
the selected subclass of channels to capture the distribution of 
training data for a particular gait. 

Given finite data samples (X, i=1,..., n), the one class 
SVM finds a region in the input space where the data pre 
dominantly lies or the unknown probability density is rela 
tively large (e.g. exceeds some threshold). This is referred to 
as single class learning because all training samples are from 
one class. The radial basis function maps the input space to a 
high dimensional space, where the possible parameterization 
of f(x, ()) is a hypersphere whose boundary is defined by its 
radius r and centera. This can be expressed using the follow 
ing equation: 

where X is the input data. 
The use of radial basis functions as the kernel is known to 

one of skill in the art and is not described in more detail 
herein. The result of solving the above one class SVM equa 
tion is a model which captures the distributions of different 
coefficient vectors for different users for a given gait. After 
calculating the gait template model, unknown input data can 
be compared to the gait template model rather than the plu 
rality of templates for each distribution. This further reduces 
processing requirements when identifying unknown gait 
modes. In addition, this saves memory when loading the 
template models during the identification phase as opposed to 
loading the different gait templates. 

FIG. 6 is a flow chart depicting an exemplary identification 
phase method 600, which is used to identify a user's gait. 
Method 600 can be implemented by wavelet motion classifi 
cation functionality 106 described above. At block 602, iner 
tial motion data from one or more data channels is received as 
described above. At block 604, the inertial motion data for 
each of the received data channels is optionally segmented. 
That is, cycles of the repetitive motion or step are identified 
and separated. Segmentation of the inertial motion data in the 
identification phase method 600 can be used to obtain an 
additional cue that verifies the classified frequency. However, 
it is to be understood that the inertial motion data is not 
segmented in every embodiment of the identification method 
600. 
At block 606, a wavelet transform is performed on the data 

as described above to calculate a coefficient vector for the 
received channels. At block 608, one of a plurality of gaits is 
selected as the user's gait based on the calculated coefficient 
vector of at least one of the one or more channels and on the 
plurality oftemplates, each template corresponding to one of 
the plurality of gaits. For example, in Some embodiments the 
coefficient vectors are compared to a plurality oftemplates to 
identify the gait mode. In some Such embodiments, the coef 
ficient vectors for each of the received channels is compared 
to a plurality of corresponding coefficient vectors for each 
gait mode to identify the closest match. In other embodi 
ments, a selected Subset of channels is compared to the plu 
rality of corresponding coefficient vectors. 

For example, when feature selection is performed during 
the training phase, the Subset of channels for each type of gait 
is identified. Thus, each subset of channels is compared to the 
templates for the corresponding gait. For example, if the a y 
channel is selected as the Subset for the walking gait, only the 
coefficient vector from the a y channel is compared to the 
templates for the walking gait. However, if the a y and w Z 
channels are selected as the Subset for the running gait, then 
the coefficient vectors from the a y and W Z channels are 
compared to the templates for the running gait. 
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Additionally, when a template model is generated for each 
gait, such with a one class SVM as described above, then the 
selected gait is selected based on fitting the coefficient vectors 
to one template model for each gait. Each template model 
describes a distribution of the gait templates corresponding to 
the respective gait. The template model to which the coeffi 
cient vector best fits is selected as the user's gait mode. After 
identifying the gait mode, a distance-traveled estimate can be 
calculated, as described above, based on the identified gait. 

In addition, inorder to validate a match of the current query 
wavelet to a gait template, additional statistical tests to 
decrease the probability of false positives and negatives can 
be employed in some embodiments. For example, a threshold 
can be used which discards all matches which are less than a 
certain probability level. In effect, after comparing the query 
wavelet (e.g. using the corresponding coefficient vector) to all 
of the templates, if the highest matching score is not greater 
than the threshold, at block 608 the query wavelet is assigned 
to the “no-model hypothesis, which means that the person is 
executing an unknown gait and no step-length update is fed to 
the Kalman Filter functionality 108. 

In another example, the statistical test used to improve the 
accuracy of the classification method 600 is to compute the 
ratio between the best matching hypothesis score and the 
second best hypothesis score. If this ratio is not higher than a 
threshold, then there are two or more probable gaits. In some 
such embodiments, when there are two or more probable 
gaits, it is determined that it is not safe to assign a gait class 
and the query wavelet is assigned to the no-model hypothesis. 

Another exemplary technique employed at block 608 is a 
sliding window consensus metric. In other words, not only the 
current classification decision is examined, but also the pre 
vious decisions over a time horizon (e.g., the last ten deci 
sions). If a majority of the queries agree on a single gait, then 
the classification scheme matches the current query wavelet 
to that gait mode. However, in Some embodiments, if there is 
incongruence in the classification decisions over the time 
horizon, then the current wavelet query is assigned to the 
no-model hypothesis. It is to be understood that the exem 
plary statistical techniques described above are provided by 
way of example and that other techniques can be used in other 
embodiments to validate a match of the current query wavelet 
to a gait template. 

Although specific embodiments have been illustrated and 
described herein, it will be appreciated by those of ordinary 
skill in the art that any arrangement, which is calculated to 
achieve the same purpose, may be substituted for the specific 
embodiments shown. Therefore, it is manifestly intended that 
this invention be limited only by the claims and the equiva 
lents thereof. 

What is claimed is: 
1. A motion classification system comprising: 
an inertial measurement unit configured to sense motion of 

a user and to output a plurality of channels of inertial 
motion data corresponding to the sensed motion; and 

a processing unit configured to calculate a coefficient vec 
tor for each of the plurality of channels based on a 
wavelet transformation of the respective inertial motion 
data, and to select one of a plurality of gaits as the user's 
gait based on the calculated coefficient vector of at least 
one of the plurality of channels and on a plurality of 
templates, each template corresponding to one of the 
plurality of gaits; 

wherein each template is associated with a respective Sub 
set of the plurality of channels based on the respective 
gait to which each template corresponds; 
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12 
wherein the processing unit is configured to compare each 

template to the coefficient vector of each channel in the 
respective subset of the plurality of channels. 

2. The motion classification system of claim 1, wherein the 
processing unit is further configured to calculate a distance 
traveled estimate based, in part, on the selected gait; wherein 
the processing unit is configured to update a navigation solu 
tion based on the distance-traveled estimate. 

3. The motion classification system of claim 2, wherein the 
motion classification system further comprises: 

one or more aiding sensors each configured to sense 
motion of the user and output signals corresponding to 
the user's motion; 

wherein the processing unit is further configured to update 
the navigation Solution based on the signals from the one 
or more aiding sensors. 

4. The motion classification system of claim 1, wherein, 
during a training phase, the inertial measurement unit is con 
figured to output a plurality of channels of inertial motion 
data; and 

wherein, during the training phase, the processing unit is 
configured to receive user input indicating actual user 
gait corresponding to the inertial motion data from the 
plurality of channels; to segment the inertial motion data 
from each of the plurality of channels, and to calculate a 
coefficient vector for each of the plurality of channels 
based on a wavelet transformation of the respective seg 
mented inertial motion data; 

wherein the processing unit is further configured to corre 
late the coefficient vector for each of the plurality chan 
nels with the user input indicating actual user gait to 
generate the plurality of templates. 

5. The motion classification system of claim 4, wherein, 
during the training phase, the processing unit is configured to 
correlate the coefficient vector for each channel in a subset of 
the plurality of channels with the user input indicating actual 
user gait to generate the plurality of templates. 

6. The motion classification system of claim 5, wherein, 
during an identification phase, the inertial measurement unit 
is configured to output a plurality of channels of inertial 
motion data; and 

wherein, during the identification phase, the processing 
unit is configured to select one of the plurality of gaits as 
the user's gait based on the coefficient vector for each 
channel of a subset of the plurality of channels. 

7. The motion classification system of claim 4, wherein, 
during the training phase, the processing unit is configured to 
generate a single template model for each of the plurality of 
gaits, each template model describing a distribution of coef 
ficient vectors corresponding to the respective gait. 

8. The motion classification system of claim 7, wherein, 
during an identification phase, the processing unit is config 
ured to select one of the plurality of gaits as the user's gait 
based on fitting the coefficient vector for at least one of the 
one or more channels to the respective template model of the 
selected gait. 

9. A method of classifying a user's gait, the method com 
prising: 

receiving, in a processing unit, inertial motion data from a 
plurality of data channels; 

calculating, in a processing unit, a coefficient vector for 
each of the plurality of data channels based on a wavelet 
transform of the respective inertial motion data; and 

selecting, in a processing unit, one of a plurality of gaits as 
the user's gait based on the calculated coefficient vector 
of at least one of the plurality of data channels and on a 
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plurality of templates, each template corresponding to 
one of the plurality of gaits; 

wherein each template is associated with a respective Sub 
set of the plurality of data channels based on the respec 
tive gait to which each template corresponds; and 

wherein selecting one of the plurality of gaits comprises 
comparing a respective Subset of the coefficient vectors 
to each template, each respective subset of the coeffi 
cient vectors corresponding to the respective Subset of 
the plurality of data channels associated with each tem 
plate. 

10. The method of claim 9, further comprising: 
generating the plurality of templates, wherein generating 

the plurality of templates comprises: 
receiving inertial motion data from a plurality of data 

channels; 
receiving user input data indicating the gait mode cor 

responding to the inertial motion data from the plu 
rality of data channels; 

segmenting the inertial motion data for each of the plu 
rality of data channels; 

calculating a coefficient vector for each of the plurality 
of data channels; and 

correlating the coefficient vector for each of the plurality 
data channels with the user input indicating actual 
user gait. 

11. The method of claim 10, wherein segmenting the iner 
tial motion data for each of the plurality of data channels 
comprises calculating an average step for each of the plurality 
of data channels based on the segmented inertial motion data. 

12. The method of claim 10, wherein generating the plu 
rality of templates further comprises: 

Selecting a Subset of the plurality of data channels; and 
wherein correlating the coefficient vector comprises corre 

lating the coefficient vector for each of the data channels 
in the subset of the plurality of data channels with the 
user input indicating actual user gait. 

13. The method of claim 10, wherein generating the plu 
rality of templates further comprises: 

generating a single template model for each of the plurality 
of gaits, each template model describing a distribution of 
coefficient vectors corresponding to the respective gait. 

14. The method of claim 9, further comprising: 
calculating a distance-traveled estimate based on the 

Selected gait; and 
updating a navigation Solution based on the distance-trav 

eled estimate. 
15. A program product comprising a non-transitory pro 

cessor-readable medium on which program instructions are 
embodied, wherein the program instructions are configured, 
when executed by at least one programmable processor, to 
cause the at least one programmable processor to: 
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14 
calculate a coefficient vector for each of a plurality of data 

channels based on a wavelet transform of respective 
inertial motion data for each of the plurality of data 
channels; and 

select one of a plurality of gaits as the user's gait based on 
the calculated coefficient vector of at least one of the 
plurality of data channels and on a plurality oftemplates, 
each template corresponding to one of the plurality of 
gaits: 

wherein each template is associated with a respective Sub 
set of the plurality of data channels based on the respec 
tive gait to which each template corresponds; and 

wherein the program instructions are further configured to 
cause the at least one programmable processor to com 
pare each template to a respective subset of the coeffi 
cient vectors, each respective subset of the coefficient 
vectors corresponding to the respective Subset of the 
plurality of data channels associated with each template. 

16. The program product of claim 15, wherein the program 
instructions are further configured to cause the at least one 
programmable processor to generate the plurality of tem 
plates by: 

segmenting the inertial motion data for each of a plurality 
of data channels; 

calculating a coefficient vector for each of the plurality of 
data channels; and 

correlating the coefficient vector for each of the plurality 
data channels with user input indicating actual user gait. 

17. The program product of claim 16, wherein the program 
instructions are further configured to cause the at least one 
programmable processor to calculate an average step for each 
of the plurality of data channels based on the respective seg 
mented inertial motion data. 

18. The program product of claim 16, wherein the program 
instructions are further configured to cause the at least one 
programmable processor to generate the plurality of tem 
plates by: 

selecting a Subset of the plurality of data channels; and 
correlating the coefficient vector for each of the data chan 

nels in the subset of the plurality of data channels with 
the user input indicating actual user gait. 

19. The program product of claim 16, wherein the program 
instructions are further configured to cause the at least one 
programmable processor to generate the plurality of tem 
plates by generating a single template model for each of the 
plurality of gaits, each template model describing a distribu 
tion of coefficient vectors corresponding to the respective 
gait. 

20. The program product of claim 19, wherein the program 
instructions are further configured to cause the at least one 
programmable processor to select one of the plurality of gaits 
as the user's gait by fitting the coefficient vector for the at least 
one of the one or more data channels to the respective tem 
plate model of the selected gait. 

k k k k k 


