Mirror-Based Extrinsic Camera Calibration
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Abstract This paper presents a method for determining the six degfrémedom
transformation between a camera and a base frame of int@ngstnar mirror is ma-
neuvered so as to allow the camera to observe the envirorirnenseveral viewing
angles. Points, whose coordinates in the base frame arerkmogobserved by the
camera via their reflections in the mirror. Exploiting theseasurements, we deter-
mine the camera-to-base transformation analyticallyevit assuming prior knowl-
edge of the mirror motion or placement with respect to thearamrhe computed
solution is refined using a maximume-likelihood estimatorpbtain high-accuracy
estimates of the camera-to-base transformation and tmemaonfiguration for each
image. We validate the accuracy and correctness of our mettio simulations and
real-world experiments.

1 Introduction

Cameras are utilized in a wide variety of applications ragdgrom surveillance
and crowd monitoring, to vision-based robot localizatitnorder to obtain mean-
ingful geometric information from a camera, two calibratiprocedures must be
completed. The first is intrinsic calibration, that is, detaing the internal cam-
era parameters (e.g., focal length, principal point, arelvskoefficients), which
affect the image measurements. The second is extrinsisraatin, which is the
process of computing the transformation between the caaraa base frame of
reference. In a surveillance application, the base framge meathe room or build-
ing coordinate system, whereas on a mobile robot, the baseeficould be the
robot-body frame. Several authors have addressed exticasibration of a cam-
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era to another sensor (e.g., for odometry-to-camera [@8ttial measurement unit
(IMU)-to-camera [14], or laser scanner-to-camera [1, ZTRese exploit measure-
ments from both sensors to determine their mutual transftom. However, very
little attention has been devoted to determiningdamera-to-base transformation,
for a generic base frame.

In this paper, we deal exclusively with extrinsic camerabration. Our objec-
tive is to determine the camera-to-base transformatiam fobservations of points
whose coordinates in the base frame are known. We consklardkt limiting case,
in which the known points do not lie within the camera’s fiefd/@w but can only
be observed using a planar mirror. We maneuver the mirroroint fof the camera
to provide multiple views of the points. In our formulatiamy prior information
about the mirror motion or placement with respect to the canseassumed. The
configuration of the mirror and the camera-to-base transftion are treated as
unknowns to be computed from the observations. The mainibatibn of this pa-
per is an algorithm for determining the camera-to-basesfoamationanalytically,
which requires a minimum of 3 non-collinear points tracke images.

A direct approach to extrinsic camera calibration is toizgilall of the mea-
surements in a maximum-likelihood estimator (MLE) for caripg the unknown
transformation [7]. This takes the form of a nonlinear lespiares problem, which
seeks to iteratively minimize a nonconvex function of thenmwn variables. While
appealing for its ease of implementation, this method has dvawbacks. First,
without an accurate initial guess, the minimization preo@sy take several itera-
tions to converge, or even fail to find the correct soluticec@hd, the MLE provides
no framework for studying the minimal measurement condgicequired to com-
pute a solution. To address the first issue, in the metho@pted in this paper we
first determine the transformation analytically, and thexply an MLE to refine
the computed solution (cf. Section 3). Moreover, we deteettiie minimal number
of measurements required for a unique solution. Finalljppendix 2 we comment
on the extension of this work to robot-body 3D reconstruttio

2 Related Work

Before presenting our method, we first review the relateckywwhich falls into two
categories: (i) hand-eye calibration, and (ii) catadigtystems. Hand-eye calibra-
tion is the process of determining the six degree-of-free@® d.o.f.) transforma-
tion between a camera and a tool, which are both mounted oba manipula-
tor [20, 2]. The hand-eye problem is solved by correlatirgriteasurements of the
camera and the encoders, which measure displacementgobtitgoints. This pro-
cess determines the pose of the camera with respect to tbelrade. Subsequently,
the camera-to-tool transformation is calculated by corinigithe estimated camera-
to-robot-base transformation, and the robot-base-tbttansformation, which is
assumed to be known. This necessitates the availabilityesfige technical draw-
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ings, and limits the applicability of these methods, sifeytcannot determine the
camera-to-base transformation for a generic base frame.

Next, we turn our attention to catadioptric systems, whiehemployed to per-
form synthetic multiple-view vision. Methods have beenserged utilizing a single
camera and planar [3, 8], or conic mirrors [9]. Others acd@hstereo vision with
reflections from free-form surfaces [22], and a trinocularan-based vision system
also exists [17]. Additionally, stereo is achieved with atistcamera and a moving
mirror [11], or with a moving camera and two stationary sjtedmirrors of known
radii [15]. While the use of mirror reflections relates thapproaches to our work,
the key difference is that we dwt perform synthetic stereo, i.e., only a single ob-
servation of each point is available in each image.

Janget al. demonstrate a system for 3D scene reconstruction using agiov
planar mirror [10]. Exploiting a combination of fiducial pi$ on the mirror and
vanishing points in the reflections, they solve for the posibf the mirror with
respect to the camera. The 3D scene is determined based ihetystereo from
multiple reflections. In contrast to this approach, we doasstume that the dimen-
sions of the mirror, or its position with respect to the camere available. Finally,
Kumar et al. determine the transformations between multiple camer#s non-
overlapping fields of view, using mirror reflections of a badition grid [12]. They
require 5 views (per camera) of the calibration pattern tanfa set of linear con-
straints, which are solved for the unknown transformatiemsontrast to [12], our
method requires only 3 images, each containing obsensatib@ known points, to
determine the camera-to-base transformation analygicall

3 Computing the Transfor mation

In this section, we describe our approach for analyticaditedmining the transfor-
mation between the camera frar{€}, and a frame of interes{B}, from observa-
tions of 3 points whose coordinates{B} are known. FraméB} is arbitrary and
without loss of generality, we will refer t¢B} as the “base frame.” Example base
frames vary by application, and may include: (i) the robotipframe, if the camera
is mounted on a robot, (ii) the room or building frame, if tteareera is utilized in a
surveillance application, and (iii) the rig mount, if thenvara is part of a stereo pair.
We address the most limiting scenario in which the points @rly visible

through reflections in a planar mirror that is moved in frofth@ camera to provide
multiple views of the scene. We exploit these observationsoimpute the trans-
formation betweer{ B} and{C}, without knowledge of the mirror’s placement or
motion with respect to the camera (cf. Algorithm 1). In whelldws, we present
the measurement model and discuss its relation with the-hoint pose estima-
tion problem (P3P). We comment cases where a unique soldbes not exist,
and present an analytical method to compute the unknowsftranation from a
minimum of 3 points observed in 3 images that differ by ratasi about two axes.
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Algorithm 1 Computing the Camera-to-Base Transformation

Input: Observations of 3 points tracked Mz images
Output: Camera-to-base transformati¢gR,“ps}
for each image inN; do
Convert to three-point pose estimation problem (P3P)
Solve P3P to obtain combined homogeneous/reflection tamation:{A, b}
end for
for each triplet of solutions{A, b}y, {A,b}k, {A,b}y do
Compute mirror configurations from (14)
Compute camera-to-base rotat@iﬁ from (23)
Compute camera-to-base translatigs from (16)
end for
Utilize clustering to select the correct soluti¢gR, “pg }
Refine the solution using a maximum-likelihood estimator

Lastly, we summarize a maximum-likelihood approach fomiafi the computed
transformation, a detailed discussion of which is avadabl[7].

3.1 Measurement Model

First, we present the measurement model that describesoédoh camera obser-
vations. To simplify the presentation, in this section weu®on the case of a single
point, observed in a single image. Consider a ppinthose position with respect
to frame{B}, Bp, is knowrt. We seek to express the popin the camera reference
frame{C}. From geometry (cf. Fig. 1) we have two constraint equations

“p’ =Cp+2dy°n (1)

dp=d—°n"Cp (2)
where®p’ is the reflection of'p, ©n is the mirror normal vector expressed in the
camera framedl is the distance between the mirror and the cameradarid the

distance between the mirror and the known point (both digtamre defined along
the mirror normal vector). Note also that

“p=5R%+ pe (3)
where§R is the matrix which rotates vectors between franjB$ and {C}, and

Cpg is the origin of{B} with respect to{C}. We substitute (2) and (3) into (1), and
rearrange the terms to obtain:

1 Throughout this papely denotes a vectoy expressed with respect to franfx}, YR is the
rotation matrix rotating vectors from fran{&V} to {X}, and*py is the origin of{W}, expressed
with respect to{X}. I, is then x nidentity matrix, anMmyxn, is them x n matrix of zeros.
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mirror

Fig. 1: Observation of the poiftp’ which is the reflection ofp. In this figure, the mirror plane is
perpendicular to the page. Only the reflected point is in #reera’s field of view; the real point is
not observed directly by the camera.

Cp’= (13— 2°n°n") ®p+2d©n
= (13— 2°n°n") (§RBp +Cpg) +2d“n 4)

which can be written in homogeneous coordinates as:

T]-[E [E | [F] e

The reflection op is observed by the camera, and this measurement is desbsibed
the perspective projection model:

1 T

2= {Eﬂ +n=hCp)+n, “p'=[p1 p2 ps] 6)
wheren is the pixel noise, assumed to be a zero-mean, white Gayzsiaess with
covariance matrixr,%l 2. Equations (4) and (6) define the measurement model, which
expresses the observed image coordinated,the point as a function of tHaown
position vectorBp, the unknown camera-to-base transformatiofgR,pg}, and
the unknown configuration of the mirror with respect to the camefan, d}. Note
that the transformation between the mirror and camera has.6,owever, only
3 d.o.f. appear in the measurement equation. These aressegrby the vectat©n,
which has 2 d.o.f. from the mirror normdln, and 1 d.o.f. from the camera-to-
mirror distanced. The remaining 3 d.o.f., which correspond to rotations abou
and translations of the mirror-frame origin in the mirroapé, do not affect the
measurements.
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3.2 Three-Point Perspective Pose Estimation Problem

We now briefly review the three-point perspective pose exton problem (P3P)
and discuss how it relates to our problem. The goal of P3P determine the 6
d.o.f. transformation{SR,pg}, between a camera framgC}, and a base frame,
{B}, given the known coordinates of 3 non-collinear poifits, i = 1...3, in {B},
and their corresponding perspective projectiansn {C}, defined ag:

ol o
°pl] _ [ BR Cpe] [*pi
RN SN ST ©

This problem has up to 4 pairs of solutions, where for each) fhaire is one solution
lying in front of the center of perspectivity and one behinf].

Equation (8) differs from (5) in that the former expresse®@mbageneous trans-
formation, while the latter describes a homogeneous toamsttion followed by a
reflection. Effectively, our scenario is equivalent to a R3Rhich an “imaginary”
camera{C*} with a left-handed reference frame lies behind the mirraratvserves
the true points (not the reflections). To bring (5) into a f@imilar to (8), we convert
the imaginary camera to a right-handed system by pre-niyitigpwith a reflection
across thg-axis (although any axis can be chosen):

[ép’] _ |:(|3—2626-2r) O3X1} [(I3—2CnCnT) 2d Cn] {ER CpB] {Bp]
1 O1x3 1 O1x3 1 O1x3 1 1

-7

wheree, = [0 1 qT, and {§R,“pg} is the transformation betweefB} and the
right-handed framdé(f} of the “imaginary” camera behind the mirror. The origin of
{C} coincides with that of C*}, theirx- andz-axes are common, and thgiaxes
lie in opposite directions. Note that this additional refilee can be implemented
easily, by simply negating the sign of the y-coordinate$efinage measurements.

Applying any P3P solution method to the modified problem iy (g obtain
up to 4 solutions, in general, for the unknown transforma(@R,ch}. We then
reflect each of the solutions back, to obtain:

- AT e

where the paifA,b}, describes a reflection and a homogeneous transformation.
Equating (5) and (10), we observe that:

2 The indices in this paper arefor points, j for images, and for solutions.
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A= (I3—-2°n°n")§R (11)
b= (13—2%n°n")Cpg +2d“n. (12)

To summarize, in order to exploit the similarity of our prefl to the P3P, we ex-
ecute the following steps: First, thecoordinates of the image measurements are
negated. Then, the measurements are processed by a P3thaldorobtain up to

4 solutions{§R,“pg}. Subsequently we employ (10), to obtain up to 4 solutions for
A andb. In the next section, we describe our approach for recogéhi@ unknowns,
{ER,%pg,%n,d}, fromA andb using (11) and (12).

3.3 Solution from 3 points in 3 images

We first examine the number of measurements required forcquarsiolution. When
less than 3 points are observed, regardless of the numberagfeis, there is not
enough information to determine the transformation, siBicen-collinear points
are required to define the base frame of referénEeom 1 image with 3 points,
there are not enough constraints to determine the unknair(8] and (6)]. From 2
images with 3 points observed in each, the number of constraguals the number
of unknowns; however, in this case rotations of the 2 mirtanps about the axis of
their intersection are unobservable, and thus 2 imagesocamaufficient [6].

From 3 images with 3 points in each, there are 18 scalar measunts [cf. (6)]
and 15 unknowns; 6 frofiSR,pg}, and 3 for each mirror configuratigmj, d;},
j=1...3[cf. (5)]. This is an overdetermined system, which is nogdir in the un-
known variables. In what follows, we show how to obtain a solufor this system.

Using P3P as an intermediate step, and momentarily ignarirgple solutions,
we obtain constraints of the form (11), (12) for each of therges:{Aj,b;},

j =1...3.Foreach pair ofimages, ' € {1...3}, we define the unit vectan;;, as
the perpendicular direction to; andnj (i.e., nJ-Tm“-, = nJ-T,m“/ = 0). Alternatively
statedm;j; = anj x nj,, wherea is a scaling constant to ensure unit length. Using
(11), we obtain:

AJAJT/m“/ = (|3 — 2ancan) (|3— 2an/can,) mjj/ = mjj/. (13)

Thus, by computing the eigenvector corresponding to theaigénvalue OAJAJ-T,,

we determinen;;, up to sign (it can be shown that AT, is a special orthogonal ma-
trix with 2 complex conjugate eigenvalues, and 1 eigenvetuel to 1). Employing
the properties of the cross product, we obthin:

3 In the case of 2 points, or 3 or more collinear points, rotatiabout the line that the points lie on
are not observable.

4 For the remainder of the paper, we drop the supersdaErom nj, j=1...3.
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Mz x m Moy X M Mz x M
13 X M12 Ny — 2L Mas ng — 13 Mas (14)

n=———~° = = :
[[m13 x Mya|’ |[m21 x maa||’ [[m13 x mMag||

Once we have determined the unit vectors correspondingt8 thirror planes, the
rotation matring, can be computed independently from 3 sets of equations:

SRj=(I—2njnN)Aj, j=1...3 (15)

In order to utilize all the available information, and to veé numerical errors, we
seek to compute an “averaggR from these 3 sets of equations. However, employ-
ing the arithmetic mean is inappropriate since the propartrthonormality is not
maintained. We address this issue with the procedure thestin Appendix 1.

Once the rotatior§R, and the mirror normal vectors,, j = 1...3, are deter-
mined, the remaining unknowdSpg, dy, do, d3} appear linearly in the constraint
equations [cf. (12)]

“ps
(| —2n1nI) 2n1 Ozx1 O3x1 by
| —2n2n;) O3x1 2no 0341 dl = b2 < Dx=c (16)
| —2n3n]) Osx1 O3x1 2n3 dz

whereD is a 9x 6 known matrixc is a 9x 1 known vector, and is the 6x 1 vec-
tor of unknowns. The least-squares solutionxan this linear system is = D'c,
whereD' denotes the Moore-Penrose generalized invers®. dfrom (14), (15),
(23), and (16) the mirror configurations, as well as the canrteibase transforma-
tion are computed.

Up to this point, we assumed that the P3P solution was unliueever, there
may be up to 4 solutions per image. Recall that 3 images aréregtjto compute
the camera-to-base transformation analytically, hermaggetare up to 64 solutions
for {SR,CpB, d1,d,ds, n1,Nn2,n3}, arising from the 4 4 x 4 possible combinations
of P3P solutions. When the measurements are noiselesswe®bserved in simu-
lations that only one of these solutions yields a zero-rjegtion error (i.e., satisfies
all the constraints exactly). This is because the problehaat is over-constrained
(18 constraints for 15 unknowns), and we expect to have auergglution. In the
presence of pixel noise, none of the solutions will satief/measurements exactly,
thus, we choose the one with the minimum reprojection error.

Moreover, when\; > 3 images are available, there de= ('\éc) analytically
computed transformations. However, some of these may loeunate as a result
of degenerate sets of measurements (e.g., when 3 imagdbtakea from similar
viewing angles). In order to identify the correct solutisre employ spectral clus-
tering to determine the largest set of similar solutiond.[8pecifically, we adopt
the unit-quaternion representation of rotation [f8Jg, which corresponds t@R,

and denote each solution &&T;chgk)} fork=1...Ns. To perform spectral clus-
tering, we define an affinity matrix,, in which each element is the Mahalanobis
distance between a pair of solutions, indexedklaydk’:
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-1 5ekk/:|

L =[50} Opph] [(HIQ’lHkY1Jr (HLQlek’)il] {5pkk' ()

whered 8,y is the quaternion error-angle vector betw&iﬁ() andC$Bk') [19], and
0Py = Cp|(3k> —Cpém is the difference between the translation vectors. Theiogatr
Hx andH, are the measurement Jacobians with respect to the traretfomj6],
andQ = aglz is the covariance of the pixel noise. We compute the transdtion,
{SR,%pg}, from the largest spectral cluster. The rotatigR, is determined from
(23) using all the quaternions in the cluster (cf. Appendixahd the translation,
Cpg, is computed as the arithmetic mean of the translationsaciimster.

3.4 Refining the Solution

Due to the presence of pixel noise, and the fact that noisenetaccounted for
in the analytical solution, the result of the procedure enésd in Sections 3.2-3.3
may be coarse (cf. Section 4). Hence, we employ an MLE to reiimanalytically
computed estimate. We now present an overview of the MLE é&emining the
unknown transformation between the camera and base framedthe vector
of all unknown parameters be denoted>byThis vector comprises the unknown
transformation, as well as the parametfrs;,d;}, j = 1...N, that describe each
mirror configuration:

-
x= [“pg ©ag “n] di ... °n{_dn] - (18)

Assuming Gaussian pixel noise, the likelihood of the meaments is given by:
Np Nc Np N o (CieN (1 (Cig
L(Z;x) = rlllp(zu;X) = |_“1 L 2exp[_ (za=n(%ipt)) (z—n(int))
. . 2noy 207
Np Ne
_ i 1 ex _(Zij*hij(x))T(Zij*hij(X))
[ zre7 2

where the dependence anis explicitly shown [cf. (5), (6)], and\,, is the total
number of points observed in each of tigimages. Maximizing the likelihood is
equivalent to minimizing its negative logarithm, or miniimg the cost function:

NP N

=3 3 (@ —h ()T (2 — hij (x). (19)
i=1j=

We solve this nonlinear least-squares problem with Gawesstdh iterative mini-
mization to estimat&. At each iteration, indexed b the estimate is changed by
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Fig. 2: Average RMS error over 10 trials for attitude and posiplotted versus: (a) pixel noise,
(b) number of images, (c) mirror distance, and (d) range ofaniotation.
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whereJ;;” is the Jacobian dfij; with respect tox, evaluated at the current iterate,

x(©), The analytically computed solution from Sections 3.2-43.3ttilized as the
initial iterate, x(9). Since the MLE is not the main contribution of this work, we
limit our discussion here, but refer the reader to [7] for endetails.

4 Simulations

In this section, we study the accuracy of the analyticalljpated camera-to-base
transformation (cf. Sections 3.2-3.3). In particular, weeistigate how the accu-
racy is affected by the following parameters: (i) pixel ®ii) number of images,
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(i) distance from camera to mirror, and (iv) range of thenmi's angular motion.
We consider a “standard” case, in which 3 points placed atdiheers of a right tri-
angle with sides measuring 220x 20v/2 cm are observed in 200 images, while a
mirror placed at a distance of 0.5 m is rotated b§ BGwo directions. We vary each
of the aforementioned parameters individually to examiseffect on the solution
accuracy. In Fig. 2, we plot the average RMS error for thetfmrsiand attitude,
computed over 10 trials. Some key observations are:

e Increasing the camera’s pixel noise decreases the acanfrtteyy computed solu-
tion. When the camera measurements become substantiely eq.,0 = 2 pix-
els, the average RMS error i§ ih attitude and 15 cm in position.

e Increasing the number of images results in higher accutdawever, the im-
provement follows the “law of diminishing returns,” i.e.hen a large number of
images is already available, the impact of recording mosenlations is smaller.

e Changing the distance from the mirror to the camera has dfisant effect on
the position accuracy. When the mirror is at a distance of thmaverage RMS
error for position is approximately 13 cm. The magnitudehis error suggests
that the mirror distance should be kept small. Additionatligighlights the need
to refine our analytically computed transformation with ahB4 As we show
in [7], the accuracy of the MLE is approximately 5 times beiteattitude, and
10 times better in position compared to the analytical smhut

e Increasing the range of the mirror's angular motion resalinproved accuracy.
The effect is significant and every effort should be made teertbe mirror in
the widest range of motion allowed by the camera’s field ofwie

As a final remark, we note that using the analytical solutearainitial guess for the
MLE enables the latter to converge to the correct minimun?a@d the time. On
average, fewer iterations were required (approx. 7) whempawed to using a naive
initial guess (approx. 18). This shows that a precise aitaljgolution improves the
speed and robustness of the overall estimation process.

5 Experiments

The method described in the preceding sections was empfoyetmputing the
transformation between a camera and a base frame attactied mwbot-body. For
this purpose, 3 fiducial points were placed in known posgiomthe robot as shown
in Fig. 3b. The origin of B} coincides with the top-left fiducial point; bo${B} and
{C} are right-handed systems with the axe$Bf approximately aligned with those
of {C}. These points were tracked using the KLT algorithm [18] i®Q@mages,
recorded by a Firewire camera with resolution of 162468 pixels.

A planar mirror was maneuvered in different spatial configions (rotating
about two axes), and in distances varying between 30 and S@ocmthe camera,
in order to generate a wide range of views. All the measurésn&are processed

to compute the transformation analyticaffiypg = [—14.13 -10.25 —13.89]T cm,
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@ S

Fig. 3: (&) Observation of a point on the robot reflected inrtieor, and (b) an image with 3
fiducial points, captured during experimentation.

and®gg = [—0.0401-0.0017-0.0145 09997 T This initial solution was refined
using the MLE described in Section 3.4, to obtain a betteémase for the transfor-
mation between the two frames of interest. The Gauss-Neitgoative minimiza-
tion converged after 8 iterations, to the following solatifmr the transformation:
Cpg = [~14.80 —1596 —14.95' cm, and®dg = [0.0045 00774 00389 09963 .
The corresponding® uncertainty bounds arEL.l 16 5.0] mm for the position,
and [0.2419 02313 0066@ degrees for the orientation estimates. We point out that
the estimates agree with our best guess from manual measotréive believe that
the attained accuracy (given by the ®ounds from the MLE) is sufficiently high
for most practical applications.

6 Conclusions and Future Work

In this paper, we propose a method for computing the 6 draufisformation be-
tween a camera and a base frame of reference. A mirror is naareglin front of
the camera, to provide observations of known points frofedéht viewing angles
and distances. These measurements are utilized to amdllyiompute the camera-
to-base transformation, and the solution is refined using@mum-likelihood es-
timator, which produces estimates for the camera-to-bassformation, as well
as for the mirror configuration in each image. The approachwadidated both in
simulation and experimentally. One of the key advantagek@proposed method
is its ease of use; it only requires a mirror, and it providemktion with as lit-
tle as 3 points viewed in 3 images. When more information &lalle, it can be
incorporated to produce a more accurate estimate of thsftnamation.

In our future work, we will investigate the feasibility of mor-based robot-body
3D reconstruction which we briefly discuss in Appendix 2.tRarmore, we plan to
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extend this method to the case where the coordinates of thespio the base frame
are not knowra priori, but are estimated along with the camera-to-base transform
tion and the mirror configurations.
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Appendix 1

In this section, we describe the procedure employed for cimgan “average rota-
tion,” given Nq rotation estimateg;, j = 1...Ny. We adopt the quaternion notation
from [19] and denote the quaternion of rotation arising fithnjth set of equations
asqj, which corresponds gR; [cf. (15)]. Assuming thay is the optimal estimate,
and employing the small error-angle approximation, weenttie following expres-
sion for the error in each;:

q®q "~ 112 , 1J=1...Nqg (20)

where® denotes quaternion muItipIicatidE],-, is the unit-vector axis of rotation, and
00; is the error angle between the two quaternions. Rewritiigyl#st expression
as a matrix-vector multiplication [19], yields

R -
Z(@)q = 112 ., 1=1...Ng (21)

where.Z (q;), is the left-side quaternion multiplication matrix paraer&ed byg;.
Projecting this relation, to keep only the error compongmésobtain:

56,

P2 (@)d =k 2L,

j=1...Ng (22)
whereP = [I3 03,1]. Stacking these relations, we have

P.Z (1) . ky %t
. — 1 .
1732
Pz (q_Nq) RN

: : (23)
g
g 2

Our goal is to find they™ that minimizes the norm of the right-hand side. This

occurs wherg ™~ = v(dmin), i.€., we selecti ™ to be the right singular vector cor-
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responding to the minimum singular value of tHé,3 4 matrix multiplyingg=? in
(23). After findingg~! by SVD, we compute the optimal estimate for the rotational
matrix SR = R (q), which is the rotational matrix parameterizeddpy ~

Appendix 2

We turn our attention to mirror-based robot-body 3D recatsion using mirror
reflections. We assume that in addition to the 3 points whielkaown in the robot-
body frame{B}, we observe another point,, which isunknownin {B}. From one
image, we have [cf. (4)]:

Bp, = (13— 2°n°nT) §R®py+ (15— 2°n°nT) “pg +2d “n (24)

wheref is an unknown scale factor aﬁ@{,o is the unit vector along the direction
of ©p/,. Pre-multiplying both sides by the reflection matrix yields

B (13— 2°n°n") Cp|, = ERBpy+“ps—2d “n. (25)

We assume that the transformation fr¢®} to {C}, as well as the mirror config-
uration have been determined using the method outlinedisnptiper. Hence, the
quantities{gR,“ps,“n, d} are known andp|, is measured, while the quantities
{B,Bpy} are unknown. From a single image, there are 3 constraint¢2}f] and 4
unknowns; hence, we can constr&, to lie on a line parameterized k. If the
point is observed in 2 consecutive images, then we will haser&traints and 5 un-
knowns, 3 corresponding to the unknown point’s coordinates?2 to the unknown
scale factors. In this case, we expect ff@f can be determined uniquely.

This problem is analogous to triangulation of a point froro fmage views ([5],
ch. 12). It is solvable when the origin of the camera frameiffeig:nt for the two
views. This corresponds to the quantit{'n changing. Thus, it suffices to either
change the distance to the mirror, or the mirror’s orientatvith respect to the cam-
era. We expect that the location of every unknown point orrdbet-body, which is
visible in the mirror reflections, can be determined in thdybfsrame of reference,
given that it can be reliably tracked in at least 2 imagesrtdikam different views.
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