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Abstract This paper presents a method for determining the six degree-of-freedom
transformation between a camera and a base frame of interest. A planar mirror is ma-
neuvered so as to allow the camera to observe the environmentfrom several viewing
angles. Points, whose coordinates in the base frame are known, are observed by the
camera via their reflections in the mirror. Exploiting thesemeasurements, we deter-
mine the camera-to-base transformation analytically, without assuming prior knowl-
edge of the mirror motion or placement with respect to the camera. The computed
solution is refined using a maximum-likelihood estimator, to obtain high-accuracy
estimates of the camera-to-base transformation and the mirror configuration for each
image. We validate the accuracy and correctness of our method with simulations and
real-world experiments.

1 Introduction

Cameras are utilized in a wide variety of applications ranging from surveillance
and crowd monitoring, to vision-based robot localization.In order to obtain mean-
ingful geometric information from a camera, two calibration procedures must be
completed. The first is intrinsic calibration, that is, determining the internal cam-
era parameters (e.g., focal length, principal point, and skew coefficients), which
affect the image measurements. The second is extrinsic calibration, which is the
process of computing the transformation between the cameraand a base frame of
reference. In a surveillance application, the base frame may be the room or build-
ing coordinate system, whereas on a mobile robot, the base frame could be the
robot-body frame. Several authors have addressed extrinsic calibration of a cam-
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era to another sensor (e.g., for odometry-to-camera [13], inertial measurement unit
(IMU)-to-camera [14], or laser scanner-to-camera [1, 21]). These exploit measure-
ments from both sensors to determine their mutual transformation. However, very
little attention has been devoted to determining thecamera-to-base transformation,
for a generic base frame.

In this paper, we deal exclusively with extrinsic camera calibration. Our objec-
tive is to determine the camera-to-base transformation from observations of points
whose coordinates in the base frame are known. We consider the most limiting case,
in which the known points do not lie within the camera’s field of view but can only
be observed using a planar mirror. We maneuver the mirror in front of the camera
to provide multiple views of the points. In our formulation,no prior information
about the mirror motion or placement with respect to the camera is assumed. The
configuration of the mirror and the camera-to-base transformation are treated as
unknowns to be computed from the observations. The main contribution of this pa-
per is an algorithm for determining the camera-to-base transformationanalytically,
which requires a minimum of 3 non-collinear points tracked in 3 images.

A direct approach to extrinsic camera calibration is to utilize all of the mea-
surements in a maximum-likelihood estimator (MLE) for computing the unknown
transformation [7]. This takes the form of a nonlinear least-squares problem, which
seeks to iteratively minimize a nonconvex function of the unknown variables. While
appealing for its ease of implementation, this method has two drawbacks. First,
without an accurate initial guess, the minimization process may take several itera-
tions to converge, or even fail to find the correct solution. Second, the MLE provides
no framework for studying the minimal measurement conditions required to com-
pute a solution. To address the first issue, in the method presented in this paper we
first determine the transformation analytically, and then employ an MLE to refine
the computed solution (cf. Section 3). Moreover, we determine the minimal number
of measurements required for a unique solution. Finally, inAppendix 2 we comment
on the extension of this work to robot-body 3D reconstruction.

2 Related Work

Before presenting our method, we first review the related work, which falls into two
categories: (i) hand-eye calibration, and (ii) catadioptric systems. Hand-eye calibra-
tion is the process of determining the six degree-of-freedom (6 d.o.f.) transforma-
tion between a camera and a tool, which are both mounted on a robot manipula-
tor [20, 2]. The hand-eye problem is solved by correlating the measurements of the
camera and the encoders, which measure displacements of therobot joints. This pro-
cess determines the pose of the camera with respect to the robot base. Subsequently,
the camera-to-tool transformation is calculated by combining the estimated camera-
to-robot-base transformation, and the robot-base-to-tool transformation, which is
assumed to be known. This necessitates the availability of precise technical draw-



Mirror-Based Extrinsic Camera Calibration 3

ings, and limits the applicability of these methods, since they cannot determine the
camera-to-base transformation for a generic base frame.

Next, we turn our attention to catadioptric systems, which are employed to per-
form synthetic multiple-view vision. Methods have been presented utilizing a single
camera and planar [3, 8], or conic mirrors [9]. Others accomplish stereo vision with
reflections from free-form surfaces [22], and a trinocular mirror-based vision system
also exists [17]. Additionally, stereo is achieved with a static camera and a moving
mirror [11], or with a moving camera and two stationary spherical mirrors of known
radii [15]. While the use of mirror reflections relates theseapproaches to our work,
the key difference is that we donot perform synthetic stereo, i.e., only a single ob-
servation of each point is available in each image.

Janget al. demonstrate a system for 3D scene reconstruction using a moving
planar mirror [10]. Exploiting a combination of fiducial points on the mirror and
vanishing points in the reflections, they solve for the position of the mirror with
respect to the camera. The 3D scene is determined based on synthetic stereo from
multiple reflections. In contrast to this approach, we do notassume that the dimen-
sions of the mirror, or its position with respect to the camera, are available. Finally,
Kumar et al. determine the transformations between multiple cameras with non-
overlapping fields of view, using mirror reflections of a calibration grid [12]. They
require 5 views (per camera) of the calibration pattern to form a set of linear con-
straints, which are solved for the unknown transformations. In contrast to [12], our
method requires only 3 images, each containing observations of 3 known points, to
determine the camera-to-base transformation analytically.

3 Computing the Transformation

In this section, we describe our approach for analytically determining the transfor-
mation between the camera frame,{C}, and a frame of interest,{B}, from observa-
tions of 3 points whose coordinates in{B} are known. Frame{B} is arbitrary and
without loss of generality, we will refer to{B} as the “base frame.” Example base
frames vary by application, and may include: (i) the robot-body frame, if the camera
is mounted on a robot, (ii) the room or building frame, if the camera is utilized in a
surveillance application, and (iii) the rig mount, if the camera is part of a stereo pair.

We address the most limiting scenario in which the points areonly visible
through reflections in a planar mirror that is moved in front of the camera to provide
multiple views of the scene. We exploit these observations to compute the trans-
formation between{B} and{C}, without knowledge of the mirror’s placement or
motion with respect to the camera (cf. Algorithm 1). In what follows, we present
the measurement model and discuss its relation with the three-point pose estima-
tion problem (P3P). We comment cases where a unique solutiondoes not exist,
and present an analytical method to compute the unknown transformation from a
minimum of 3 points observed in 3 images that differ by rotations about two axes.
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Algorithm 1 Computing the Camera-to-Base Transformation
Input: Observations of 3 points tracked inNc images
Output: Camera-to-base transformation{C

BR,CpB}
for each image inNc do

Convert to three-point pose estimation problem (P3P)
Solve P3P to obtain combined homogeneous/reflection transformation:{A,b}k

end for
for each triplet of solutions{A,b}k, {A,b}k′ , {A,b}k′′ do

Compute mirror configurations from (14)
Compute camera-to-base rotationC

BR from (23)
Compute camera-to-base translationCpB from (16)

end for
Utilize clustering to select the correct solution{C

BR,CpB}
Refine the solution using a maximum-likelihood estimator

Lastly, we summarize a maximum-likelihood approach for refining the computed
transformation, a detailed discussion of which is available in [7].

3.1 Measurement Model

First, we present the measurement model that describes eachof the camera obser-
vations. To simplify the presentation, in this section we focus on the case of a single
point, observed in a single image. Consider a pointp, whose position with respect
to frame{B}, Bp, is known1. We seek to express the pointp in the camera reference
frame{C}. From geometry (cf. Fig. 1) we have two constraint equations:

Cp′ = Cp+2dp
Cn (1)

dp = d −CnTCp (2)

whereCp′ is the reflection ofCp, Cn is the mirror normal vector expressed in the
camera frame,d is the distance between the mirror and the camera, anddp is the
distance between the mirror and the known point (both distances are defined along
the mirror normal vector). Note also that

Cp = C
BRBp+CpB (3)

whereC
BR is the matrix which rotates vectors between frames{B} and{C}, and

CpB is the origin of{B} with respect to{C}. We substitute (2) and (3) into (1), and
rearrange the terms to obtain:

1 Throughout this paper,X y denotes a vectory expressed with respect to frame{X}, X
W R is the

rotation matrix rotating vectors from frame{W} to {X}, andX pW is the origin of{W}, expressed
with respect to{X}. In is then×n identity matrix, and0m×n is them×n matrix of zeros.
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Fig. 1: Observation of the pointCp′ which is the reflection ofCp. In this figure, the mirror plane is
perpendicular to the page. Only the reflected point is in the camera’s field of view; the real point is
not observed directly by the camera.

Cp′ =
(

I3−2CnCnT)Cp+2d Cn

=
(

I3−2CnCnT)(C
BRBp+CpB

)

+2d Cn (4)

which can be written in homogeneous coordinates as:
[

Cp′

1

]

=

[(

I3−2CnCnT
)

2d Cn
01×3 1

][

C
BR CpB

01×3 1

][

Bp
1

]

. (5)

The reflection ofp is observed by the camera, and this measurement is describedby
the perspective projection model:

z =
1
p3

[

p1

p2

]

+ η = h(Cp′)+ η, Cp′ =
[

p1 p2 p3
]T

(6)

whereη is the pixel noise, assumed to be a zero-mean, white Gaussianprocess with
covariance matrixσ2

η I2. Equations (4) and (6) define the measurement model, which
expresses the observed image coordinates,z, of the point as a function of theknown
position vector,Bp, the unknown camera-to-base transformation,{C

BR,CpB}, and
theunknown configuration of the mirror with respect to the camera,{Cn, d}. Note
that the transformation between the mirror and camera has 6 d.o.f., however, only
3 d.o.f. appear in the measurement equation. These are expressed by the vectord Cn,
which has 2 d.o.f. from the mirror normal,Cn, and 1 d.o.f. from the camera-to-
mirror distance,d. The remaining 3 d.o.f., which correspond to rotations about Cn
and translations of the mirror-frame origin in the mirror plane, do not affect the
measurements.
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3.2 Three-Point Perspective Pose Estimation Problem

We now briefly review the three-point perspective pose estimation problem (P3P)
and discuss how it relates to our problem. The goal of P3P is todetermine the 6
d.o.f. transformation,{C

BR,CpB}, between a camera frame,{C}, and a base frame,
{B}, given the known coordinates of 3 non-collinear points,Bpi, i = 1. . .3, in {B},
and their corresponding perspective projections,zi, in {C}, defined as:2

zi =
1

p3i

[

p1i

p2i

]

, Cp′
i =
[

p1i p2i p3i
]T

(7)

[

Cp′
i

1

]

=

[

C
BR CpB

01×3 1

][

Bpi

1

]

. (8)

This problem has up to 4 pairs of solutions, where for each pair, there is one solution
lying in front of the center of perspectivity and one behind it [4].

Equation (8) differs from (5) in that the former expresses a homogeneous trans-
formation, while the latter describes a homogeneous transformation followed by a
reflection. Effectively, our scenario is equivalent to a P3Pin which an “imaginary”
camera{C∗} with a left-handed reference frame lies behind the mirror and observes
the true points (not the reflections). To bring (5) into a formsimilar to (8), we convert
the imaginary camera to a right-handed system by pre-multiplying with a reflection
across they-axis (although any axis can be chosen):

[

C̆p′

1

]

=

[(

I3−2e2eT
2

)

03×1

01×3 1

][(

I3−2CnCnT
)

2d Cn
01×3 1

][

C
BR CpB

01×3 1

][

Bp
1

]

=

[

C̆
BR C̆pB

01×3 1

][

Bp
1

]

(9)

wheree2 =
[

0 1 0
]T

, and{C̆
BR,C̆pB} is the transformation between{B} and the

right-handed frame{C̆} of the “imaginary” camera behind the mirror. The origin of
{C̆} coincides with that of{C∗}, their x- andz-axes are common, and theiry-axes
lie in opposite directions. Note that this additional reflection can be implemented
easily, by simply negating the sign of the y-coordinates of the image measurements.

Applying any P3P solution method to the modified problem in (9), we obtain
up to 4 solutions, in general, for the unknown transformation {C̆

BR,C̆pB}. We then
reflect each of the solutions back, to obtain:

[

Cp′

1

]

=

[(

I3−2e2eT
2

)

03×1

01×3 1

][

C̆
BR C̆pB

01×3 1

][

Bp
1

]

=

[

A b
01×3 1

][

Bp
1

]

(10)

where the pair{A,b}, describes a reflection and a homogeneous transformation.
Equating (5) and (10), we observe that:

2 The indices in this paper are:i for points, j for images, andk for solutions.
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A =
(

I3−2CnCnT)C
BR (11)

b =
(

I3−2CnCnT)CpB +2d Cn. (12)

To summarize, in order to exploit the similarity of our problem to the P3P, we ex-
ecute the following steps: First, they-coordinates of the image measurements are
negated. Then, the measurements are processed by a P3P algorithm to obtain up to
4 solutions{C̆

BR,C̆pB}. Subsequently we employ (10), to obtain up to 4 solutions for
A andb. In the next section, we describe our approach for recovering the unknowns,
{C

BR,CpB,Cn,d}, from A andb using (11) and (12).

3.3 Solution from 3 points in 3 images

We first examine the number of measurements required for a unique solution. When
less than 3 points are observed, regardless of the number of images, there is not
enough information to determine the transformation, since3 non-collinear points
are required to define the base frame of reference3. From 1 image with 3 points,
there are not enough constraints to determine the unknowns [cf. (5) and (6)]. From 2
images with 3 points observed in each, the number of constraints equals the number
of unknowns; however, in this case rotations of the 2 mirror planes about the axis of
their intersection are unobservable, and thus 2 images are not sufficient [6].

From 3 images with 3 points in each, there are 18 scalar measurements [cf. (6)]
and 15 unknowns; 6 from{C

BR,CpB}, and 3 for each mirror configuration{n j,d j},
j = 1. . .3 [cf. (5)]. This is an overdetermined system, which is nonlinear in the un-
known variables. In what follows, we show how to obtain a solution for this system.

Using P3P as an intermediate step, and momentarily ignoringmultiple solutions,
we obtain constraints of the form (11), (12) for each of the 3 images:{A j,b j},
j = 1. . .3. For each pair of images,j, j′ ∈ {1. . .3}, we define the unit vectorm j j′ , as
the perpendicular direction ton j andn j′ (i.e.,nT

j m j j′ = nT
j′m j j′ = 0). Alternatively

stated,m j j′ = αn j ×n j′ , whereα is a scaling constant to ensure unit length. Using
(11), we obtain:

A jAT
j′m j j′ =

(

I3−2Cn j
CnT

j

)

(

I3−2Cn j′
CnT

j′

)

m j j′ = m j j′ . (13)

Thus, by computing the eigenvector corresponding to the unit eigenvalue ofA jAT
j′ ,

we determinem j j′ up to sign (it can be shown thatA jAT
j′ is a special orthogonal ma-

trix with 2 complex conjugate eigenvalues, and 1 eigenvalueequal to 1). Employing
the properties of the cross product, we obtain:4

3 In the case of 2 points, or 3 or more collinear points, rotations about the line that the points lie on
are not observable.
4 For the remainder of the paper, we drop the superscript ‘C’ from n j, j = 1. . .3.
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n1 =
m13×m12

||m13×m12||
, n2 =

m21×m23

||m21×m23||
, n3 =

m13×m23

||m13×m23||
. (14)

Once we have determined the unit vectors corresponding to the 3 mirror planes, the
rotation matrix,CBR, can be computed independently from 3 sets of equations:

C
BR j =

(

I−2n jnT
j

)

A j, j = 1. . .3. (15)

In order to utilize all the available information, and to reduce numerical errors, we
seek to compute an “average”C

BR from these 3 sets of equations. However, employ-
ing the arithmetic mean is inappropriate since the propertyof orthonormality is not
maintained. We address this issue with the procedure described in Appendix 1.

Once the rotation,CBR, and the mirror normal vectors,n j, j = 1. . .3, are deter-
mined, the remaining unknowns{CpB, d1, d2, d3} appear linearly in the constraint
equations [cf. (12)]





(

I−2n1nT
1

)

2n1 03×1 03×1
(

I−2n2nT
2

)

03×1 2n2 03×1
(

I−2n3nT
3

)

03×1 03×1 2n3













CpB

d1

d2

d3









=





b1

b2

b3



⇔ Dx = c (16)

whereD is a 9×6 known matrix,c is a 9×1 known vector, andx is the 6×1 vec-
tor of unknowns. The least-squares solution forx in this linear system isx = D†c,
whereD† denotes the Moore-Penrose generalized inverse ofD. From (14), (15),
(23), and (16) the mirror configurations, as well as the camera-to-base transforma-
tion are computed.

Up to this point, we assumed that the P3P solution was unique,however, there
may be up to 4 solutions per image. Recall that 3 images are required to compute
the camera-to-base transformation analytically, hence, there are up to 64 solutions
for {C

BR,CpB,d1,d2,d3,n1,n2,n3}, arising from the 4×4×4 possible combinations
of P3P solutions. When the measurements are noiseless, we have observed in simu-
lations that only one of these solutions yields a zero-reprojection error (i.e., satisfies
all the constraints exactly). This is because the problem athand is over-constrained
(18 constraints for 15 unknowns), and we expect to have a unique solution. In the
presence of pixel noise, none of the solutions will satisfy the measurements exactly,
thus, we choose the one with the minimum reprojection error.

Moreover, whenNc > 3 images are available, there areNs =
(Nc

3

)

analytically
computed transformations. However, some of these may be inaccurate as a result
of degenerate sets of measurements (e.g., when 3 images are all taken from similar
viewing angles). In order to identify the correct solution,we employ spectral clus-
tering to determine the largest set of similar solutions [16]. Specifically, we adopt
the unit-quaternion representation of rotation [19],Cq̄B, which corresponds toCBR,

and denote each solution as{Cq̄(k)
B ,Cp(k)

B } for k = 1. . .Ns. To perform spectral clus-
tering, we define an affinity matrix,L, in which each element is the Mahalanobis
distance between a pair of solutions, indexed byk andk′:
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Lkk′ =
[

δθθθ T
kk′ δpT

kk′
]

[

(

HT
k Q−1Hk

)−1
+
(

HT
k′Q

−1Hk′
)−1
]−1
[

δθθθ kk′

δpkk′

]

(17)

whereδθθθ kk′ is the quaternion error-angle vector betweenCq̄(k)
B andCq̄(k′)

B [19], and

δpkk′ =
Cp(k)

B −Cp(k′)
B is the difference between the translation vectors. The matrices

Hk andHk′ are the measurement Jacobians with respect to the transformation [6],
andQ = σ2

η I2 is the covariance of the pixel noise. We compute the transformation,
{C

BR,CpB}, from the largest spectral cluster. The rotation,C
BR, is determined from

(23) using all the quaternions in the cluster (cf. Appendix 1), and the translation,
CpB, is computed as the arithmetic mean of the translations in the cluster.

3.4 Refining the Solution

Due to the presence of pixel noise, and the fact that noise wasnot accounted for
in the analytical solution, the result of the procedure presented in Sections 3.2-3.3
may be coarse (cf. Section 4). Hence, we employ an MLE to refineour analytically
computed estimate. We now present an overview of the MLE for determining the
unknown transformation between the camera and base frame [7]. Let the vector
of all unknown parameters be denoted byx. This vector comprises the unknown
transformation, as well as the parameters{Cn j,d j}, j = 1. . .Nc, that describe each
mirror configuration:

x =
[

CpT
B

Cq̄T
B

CnT
1 d1 . . . CnT

Nc
dNc

]T
. (18)

Assuming Gaussian pixel noise, the likelihood of the measurements is given by:

L(Z ;x) =
Np

∏
i=1

Nc

∏
j=1

p(zi j;x) =
Np

∏
i=1

Nc

∏
j=1

1
2πσ2

η
exp

[

−
(

zi j−h
(

Cj p′i
))T(

zi j−h
(

Cj p′i
))

2σ2
η

]

=
Np

∏
i=1

Nc

∏
j=1

1
2πσ2

η
exp

[

− (zi j−hi j(x))
T
(zi j−hi j(x))

2σ2
η

]

where the dependence onx is explicitly shown [cf. (5), (6)], andNp is the total
number of points observed in each of theNc images. Maximizing the likelihood is
equivalent to minimizing its negative logarithm, or minimizing the cost function:

c(x) =
Np

∑
i=1

Nc

∑
j=1

(zi j −hi j(x))T(zi j −hi j(x)). (19)

We solve this nonlinear least-squares problem with Gauss-Newton iterative mini-
mization to estimatex. At each iteration, indexed byℓ, the estimate is changed by
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Fig. 2: Average RMS error over 10 trials for attitude and position plotted versus: (a) pixel noise,
(b) number of images, (c) mirror distance, and (d) range of mirror rotation.

δx(ℓ)=

(

∑
i, j

J(ℓ)T
i j J(ℓ)

i j

)−1(

∑
i, j

J(ℓ)T
i j

(

zi j −hi j(x(ℓ))
)

)

whereJ(ℓ)
i j is the Jacobian ofhi j with respect tox, evaluated at the current iterate,

x(ℓ). The analytically computed solution from Sections 3.2-3.3is utilized as the
initial iterate,x(0). Since the MLE is not the main contribution of this work, we
limit our discussion here, but refer the reader to [7] for more details.

4 Simulations

In this section, we study the accuracy of the analytically computed camera-to-base
transformation (cf. Sections 3.2-3.3). In particular, we investigate how the accu-
racy is affected by the following parameters: (i) pixel noise, (ii) number of images,
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(iii) distance from camera to mirror, and (iv) range of the mirror’s angular motion.
We consider a “standard” case, in which 3 points placed at thecorners of a right tri-
angle with sides measuring 20×20×20

√
2 cm are observed in 200 images, while a

mirror placed at a distance of 0.5 m is rotated by 30o in two directions. We vary each
of the aforementioned parameters individually to examine its effect on the solution
accuracy. In Fig. 2, we plot the average RMS error for the position and attitude,
computed over 10 trials. Some key observations are:

• Increasing the camera’s pixel noise decreases the accuracyof the computed solu-
tion. When the camera measurements become substantially noisy, e.g.,σ = 2 pix-
els, the average RMS error is 1o in attitude and 15 cm in position.

• Increasing the number of images results in higher accuracy.However, the im-
provement follows the “law of diminishing returns,” i.e., when a large number of
images is already available, the impact of recording more observations is smaller.

• Changing the distance from the mirror to the camera has a significant effect on
the position accuracy. When the mirror is at a distance of 1 m,the average RMS
error for position is approximately 13 cm. The magnitude of this error suggests
that the mirror distance should be kept small. Additionally, it highlights the need
to refine our analytically computed transformation with an MLE. As we show
in [7], the accuracy of the MLE is approximately 5 times better in attitude, and
10 times better in position compared to the analytical solution.

• Increasing the range of the mirror’s angular motion resultsin improved accuracy.
The effect is significant and every effort should be made to move the mirror in
the widest range of motion allowed by the camera’s field of view.

As a final remark, we note that using the analytical solution as an initial guess for the
MLE enables the latter to converge to the correct minimum 100% of the time. On
average, fewer iterations were required (approx. 7) when compared to using a naı̈ve
initial guess (approx. 18). This shows that a precise analytical solution improves the
speed and robustness of the overall estimation process.

5 Experiments

The method described in the preceding sections was employedfor computing the
transformation between a camera and a base frame attached onthe robot-body. For
this purpose, 3 fiducial points were placed in known positions on the robot as shown
in Fig. 3b. The origin of{B} coincides with the top-left fiducial point; both{B} and
{C} are right-handed systems with the axes of{B} approximately aligned with those
of {C}. These points were tracked using the KLT algorithm [18] in 1000 images,
recorded by a Firewire camera with resolution of 1024×768 pixels.

A planar mirror was maneuvered in different spatial configurations (rotating
about two axes), and in distances varying between 30 and 50 cmfrom the camera,
in order to generate a wide range of views. All the measurements were processed
to compute the transformation analytically:CpB =

[

−14.13−10.25−13.89
]T cm,
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(a) (b)

Fig. 3: (a) Observation of a point on the robot reflected in themirror, and (b) an image with 3
fiducial points, captured during experimentation.

andCq̄B =
[

−0.0401−0.0017−0.0145 0.9991
]T

. This initial solution was refined
using the MLE described in Section 3.4, to obtain a better estimate for the transfor-
mation between the two frames of interest. The Gauss-Newtoniterative minimiza-
tion converged after 8 iterations, to the following solution for the transformation:
CpB =

[

−14.80−15.96−14.95
]T

cm, andCq̄B =
[

0.0045 0.0774 0.0389 0.9962
]T

.
The corresponding 3σ uncertainty bounds are

[

1.1 1.6 5.0
]

mm for the position,
and

[

0.2419 0.2313 0.0665
]

degrees for the orientation estimates. We point out that
the estimates agree with our best guess from manual measurement. We believe that
the attained accuracy (given by the 3σ bounds from the MLE) is sufficiently high
for most practical applications.

6 Conclusions and Future Work

In this paper, we propose a method for computing the 6 d.o.f. transformation be-
tween a camera and a base frame of reference. A mirror is maneuvered in front of
the camera, to provide observations of known points from different viewing angles
and distances. These measurements are utilized to analytically compute the camera-
to-base transformation, and the solution is refined using a maximum-likelihood es-
timator, which produces estimates for the camera-to-base transformation, as well
as for the mirror configuration in each image. The approach was validated both in
simulation and experimentally. One of the key advantages ofthe proposed method
is its ease of use; it only requires a mirror, and it provides asolution with as lit-
tle as 3 points viewed in 3 images. When more information is available, it can be
incorporated to produce a more accurate estimate of the transformation.

In our future work, we will investigate the feasibility of mirror-based robot-body
3D reconstruction which we briefly discuss in Appendix 2. Furthermore, we plan to
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extend this method to the case where the coordinates of the points in the base frame
are not knowna priori, but are estimated along with the camera-to-base transforma-
tion and the mirror configurations.
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Appendix 1

In this section, we describe the procedure employed for computing an “average rota-
tion,” givenNq rotation estimates ¯q j, j = 1. . .Nq. We adopt the quaternion notation
from [19] and denote the quaternion of rotation arising fromthe jth set of equations
asq̄ j, which corresponds toCBR j [cf. (15)]. Assuming that ¯q is the optimal estimate,
and employing the small error-angle approximation, we write the following expres-
sion for the error in each ¯q j:

q̄ j ⊗ q̄−1 ≃
[

k̂ j
δθ j
2

1

]

, j = 1. . .Nq (20)

where⊗ denotes quaternion multiplication,k̂ j is the unit-vector axis of rotation, and
δθ j is the error angle between the two quaternions. Rewriting this last expression
as a matrix-vector multiplication [19], yields

L (q̄ j) q̄−1 =

[

k̂ j
δθ j
2

1

]

, j = 1. . .Nq (21)

whereL (q̄ j), is the left-side quaternion multiplication matrix parameterized by ¯q j.
Projecting this relation, to keep only the error components, we obtain:

PL (q̄ j) q̄−1 = k̂ j
δθ j

2
, j = 1. . .Nq (22)

whereP =
[

I3 03×1
]

. Stacking these relations, we have







PL (q̄1)
...

PL
(

q̄Nq

)






q̄−1 =

1
2









k̂1
δθ1
2

...

k̂Nq

δθNq
2









. (23)

Our goal is to find the ¯q−1 that minimizes the norm of the right-hand side. This
occurs when ¯q−1 = v(σmin), i.e., we select ¯q−1 to be the right singular vector cor-
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responding to the minimum singular value of the 3Nq ×4 matrix multiplyingq̄−1 in
(23). After findingq̄−1 by SVD, we compute the optimal estimate for the rotational
matrixC

BR = R(q̄), which is the rotational matrix parameterized by ¯q.

Appendix 2

We turn our attention to mirror-based robot-body 3D reconstruction using mirror
reflections. We assume that in addition to the 3 points which are known in the robot-
body frame,{B}, we observe another point,pu, which isunknown in {B}. From one
image, we have [cf. (4)]:

β Cp′
u0

=
(

I3−2CnCnT)C
BRBpu +

(

I3−2CnCnT)CpB +2d Cn (24)

whereβ is an unknown scale factor andCp′
u0

is the unit vector along the direction
of Cp′

u. Pre-multiplying both sides by the reflection matrix yields

β
(

I3−2CnCnT)Cp′
u0

= C
BRBpu +CpB −2d Cn. (25)

We assume that the transformation from{B} to {C}, as well as the mirror config-
uration have been determined using the method outlined in this paper. Hence, the
quantities{C

BR,CpB,Cn, d} are known andCp′
u0

is measured, while the quantities
{β ,Bpu} are unknown. From a single image, there are 3 constraints [cf. (25)] and 4
unknowns; hence, we can constrainBpu to lie on a line parameterized byβ . If the
point is observed in 2 consecutive images, then we will have 6constraints and 5 un-
knowns, 3 corresponding to the unknown point’s coordinatesand 2 to the unknown
scale factors. In this case, we expect thatBpu can be determined uniquely.

This problem is analogous to triangulation of a point from two image views ([5],
ch. 12). It is solvable when the origin of the camera frame is different for the two
views. This corresponds to the quantityd Cn changing. Thus, it suffices to either
change the distance to the mirror, or the mirror’s orientation with respect to the cam-
era. We expect that the location of every unknown point on therobot-body, which is
visible in the mirror reflections, can be determined in the body frame of reference,
given that it can be reliably tracked in at least 2 images taken from different views.
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