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Abstract. This paper presents a method for determining the six-degree-
of-freedom (DOF) transformation between a camera and a base frame
of interest, while concurrently estimating the 3D base-frame coordinates
of unknown point features in the scene. The camera observes the reflec-
tions of fiducial points, whose base-frame coordinates are known, and
reconstruction points, whose base-frame coordinates are unknown. In
this paper, we examine the case in which, due to visibility constraints,
none of the points are directly viewed by the camera, but instead are seen
via reflection in multiple planar mirrors. Exploiting these measurements,
we analytically compute the camera-to-base transformation and the 3D
base-frame coordinates of the unknown reconstruction points, without
a priori knowledge of the mirror sizes, motions, or placements with re-
spect to the camera. Subsequently, we refine the analytical solution using
a maximum-likelihood estimator (MLE), to obtain high-accuracy esti-
mates of the camera-to-base transformation, the mirror configurations
for each image, and the 3D coordinates of the reconstruction points in
the base frame. We validate the accuracy and correctness of our method
with simulations and real-world experiments.

1 Introduction

Extrinsic calibration – the task of computing the six-degrees-of-freedom (DOF)
transformation between the camera’s frame of reference and a base frame of
interest – is a prerequisite for many vision-based tasks. For example, mobile
robots often rely on cameras to detect and locate obstacles during their oper-
ation. When this is the case, accurate knowledge of the camera-to-body trans-
formation is necessary for precise navigation. Estimating this transformation is
often not a trivial matter: one common problem is that the robot’s chassis may
not lie within the camera’s direct field of view (see Fig. 1), which means that
one cannot apply calibration methods that rely on direct observations of known
points on the robot body. This is only one example application where the camera
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extrinsic parameters must be computed without a direct line-of-sight to any of
the available fiducial points. In this work, we show that in these cases one can
exploit observations of the fiducial points through reflections in multiple mirrors,
to extrinsically calibrate the camera.

Fig. 1. A mobile robot views its reflec-
tion in two mirrors (front highlighted
in blue, back highlighted in purple).
The robot visually tracks point features
to estimate the camera-to-base frame
transformation, and a 3D point-cloud
representation of its chassis.

The objective of our work is to de-
sign an automated procedure for de-
termining the 3D transformation be-
tween the camera frame and a base
frame of interest, by utilizing the mea-
surements of fiducial points, whose
position in the base frame is known
a priori. We examine the scenario in
which the known points are not di-
rectly visible to the camera, but can
only be observed through reflections
in multiple mirrors. We maneuver the
mirrors to provide the camera with
multiple views of the fiducial points;
however, no prior information about
the mirrors’ sizes or motions with re-
spect to the camera is assumed. In-
stead, the configurations of the mir-
rors and the camera-to-base transformation are both treated as unknowns to be
computed from the measurements. In addition to these quantities, in this paper
we show how the images recorded by the camera through the mirror reflections
can be used to estimate the positions of additional points in the scene, whose
locations were not known a priori.

Thus, the problem we address is that of jointly estimating the camera’s con-
figuration, mirrors’ configurations, and scene structure, using observations of
points visible only though a number of reflections. The main contribution of
this work is an algorithm for analytically computing all the unknown quantities,
given the available measurements. The analytically computed estimates are sub-
sequently refined by a maximum likelihood estimator (MLE), implemented by an
iterative nonlinear minimization process, to obtain the estimates with the high-
est precision possible while accounting for measurement noise. In addition to the
theoretical importance of an analytical solution, its practical utility is demon-
strated by both our simulation results and our real-world experiments. These
tests demonstrate that using the analytical solution to seed the MLE results in
accurate estimates, which can be computed in a small number of iterations.

2 Related Work

Extrinsic camera calibration has been widely studied for the case in which known
points are directly observed by the camera [1–3]. Unfortunately, in many real-
istic scenarios, the known points may not lie within the camera’s field of view
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(see Fig. 1). This motivates studying the more limiting scenarios, in which the
points of interest can only be observed through reflection using one or more
planar mirrors. The literature in this field is substantially sparser. We note that
catadioptric systems in which one or more mirrors are employed to reconstruct
a scene, such as those presented in [4–7] are not directly relevant here. First, in
these methods the location of the mirrors is assumed to be known in advance.
Second, in these systems each point is observed multiple times in each image (di-
rectly, as well as through reflections). In our method each point is only observed
once per image, via its reflection in the moving planar mirrors.
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Fig. 2. The camera observes Cp′, which
is the reflection of p. The base frame is
{B}, while {C} is the camera frame, and
{C∗} is the equivalent imaginary cam-
era frame which lies behind the mirror.
Cv1 is the shortest vector from {C} to
the mirror. The distance dp is measured
from p to the mirror, along v1. The vec-
tor CpB is the origin of {B} with re-
spect to {C}, while Bp and Cp denote
the coordinates of p expressed in {B}
and {C}, respectively. The dashed green
line is the path of the reflection.

A system which employs a moving
planar mirror for 3D scene reconstruc-
tion was introduced by Jang et al. [8].
By exploiting a combination of known
markers on a moving mirror and van-
ishing points in the reflections, they
first solved for the position of the mir-
ror with respect to the camera, and
subsequently determined the 3D scene
based on synthetic stereo from multi-
ple reflections. In contrast to this ap-
proach, we do not utilize known mir-
ror markers, since doing so would in-
troduce constraints on the mirror mo-
tions (i.e., the markers must always be
visible to the camera). This enhances
the flexibility of our method, but it
renders our problem more challeng-
ing, since multiple images are required
to compute the mirror configurations.

Kumar et al. [9] presented a vision
system that utilized a moving planar
mirror to determine the transforma-
tions between multiple cameras with
non-overlapping fields of view. Each
camera in turn viewed the reflection of a calibration grid, whose position with
respect to the cameras was fixed. To solve the problem, each camera was required
to view the calibration pattern from five vantage points. Subsequently, the mea-
surement constraints were transformed into a set of linear equations which were
solved for the unknown transformations. In contrast to [9], the method presented
here requires observations of only three fiducial points, and is also applicable in
cases where reflection in a single mirror is not sufficient to make the points visible
to the camera.

Finally, in our previous work we addressed the problem of extrinsic camera
calibration using a single mirror, presenting both an analytical solution [10], and
an MLE to obtain estimates of the camera-to-base transformation [11]. We now
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extend this single-mirror extrinsic calibration method and address the multi-
mirror case, as described in the following sections.

3 Problem Formulation

Our main goal in this work is to simultaneously determine: (i) the six-DOF
transformation between the camera frame, {C}, and a base frame of interest,
{B}, and (ii) the 3D base-frame coordinates of Nr “reconstruction points.” To
this end, we assume that Nf fiducial points, whose coordinates in the base frame
are known a priori, are observed in Nc images. We address the most limiting
scenario, in which the points do not lie in the camera’s direct field of view, but
are only visible via reflection in Nv mirrors (each point is reflected Nv times,
and each point is only observed once in each image). Since the placement of
the mirrors in each image is unknown, in addition to the camera configuration
and the positions of the reconstruction points, it is necessary to jointly estimate
the configurations of the mirrors in all the images. In what follows, we start by
presenting the model describing the camera measurements.

3.1 Measurement Model

The camera observes each point, p, via its reflection p′, as shown in Fig. 2. The
measurement model which describes this observation is divided in two compo-
nents: (i) the camera projection model and (ii) the expression which describes
the geometric relationship between p′ and p as a function of the mirror and
camera configurations.
Single-mirror constraint: In the single-mirror scenario, we obtain two equa-
tions from geometry (see Fig. 2):

Cp′ = Cp + 2dp
Cv1

‖Cv1‖
, dp = ‖Cv1‖ −

CvT1
‖Cv1‖

Cp, (1)

where Cp′ is the vector from the origin of {C} to the reflected point p′, Cp is
vector from {C} to p, Cv1 is the mirror vector, which is the shortest vector form
the origin of {C} to the reflective surface, and dp is the distance between the
mirror and the point p measured along the direction of Cv1. In order to simplify
the notation, we refer to Cv1 as v1 in the remainder of the paper. In addition to
the two geometric constraints derived from Fig. 2, we also exploit the coordinate
transformation between Cp and Bp, i.e.,

Cp = C

BRBp + CpB, (2)

where C
BR is the matrix which rotates vectors from {B} to {C}, and CpB is the

origin of {B} with respect to {C}. We substitute (2) into (1), and rearrange the
terms to obtain

Cp′ =

(
I3 − 2

v1v
T
1

vT1 v1

)
Cp + 2 v1 = M1 (CBRBp + CpB) + 2 v1, (3)
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where M1 =
(
I3 − 2

(
v1v

T
1 /v

T
1 v1

))
is the Householder transformation matrix

corresponding to the mirror reflection. Equation (3) is equivalently expressed in
homogeneous coordinates as[

Cp′

1

]
=

[
M1 2 v1

01×3 1

] [
C
BR CpB
01×3 1

] [
Bp
1

]
=

[
A1 b1

01×3 1

] [
Bp
1

]
, (4)

where the pair, A1 = M1
C
BR and b1 = M1

CpB + 2v1, defines a composite
homogeneous/reflection transformation, which converts Bp into Cp′.
Nv-mirror constraint: The single-mirror case is readily extended to the Nv-
mirror case, by noting that each additional mirror in the system adds a reflection
transformation parameterized by the corresponding mirror vector. Hence, the
geometric relationship for a base-frame point observed through Nv mirrors is[

Cp′

1

]
=

[
MNv 2 vNv
01×3 1

]
· · ·
[

M1 2 v1

01×3 1

][
C
BR CpB
01×3 1

][
Bp
1

]
=

[
ANv bNv
01×3 1

][
Bp
1

]
,(5)

where {ANv ,bNv} is a homogeneous transformation comprising the Nv mirror
vectors and the camera-to-base transformation. Their structure can be defined
recursively by expanding (5), i.e.,

ANv = MNv · · ·M1
C

BR = MNvANv−1 (6)

bNv = MNv · · ·M1
CpB + 2 MNv · · ·M2v1 + · · ·

+2 MNvMNv−1vNv−2 + 2 MNvvNv−1 + 2 vNv

= MNvbNv−1 + 2 vNv . (7)

We extend this recursive structure to include the camera-to-base transformation:

A0 = C

BR, b0 = CpB, (8)

which will simplify the discussion of our analytical solution (see Sect. 4.2).
Perspective projection model: The reflected point, p′, is observed by the
camera whose intrinsic camera parameters are assumed to be known [12]. The
normalized image coordinates of the measurement are described by the perspec-
tive projection model:

z =
1

p3

[
p1

p2

]
+ η = h(Cp′) + η, Cp′ =

[
p1 p2 p3

]T
, (9)

where η is the pixel noise, which is modeled as a zero-mean white Gaussian pro-
cess with covariance matrix σ2

ηI2. Equations (5) and (9) define the measurement
model that expresses the point’s observed image coordinates z, as a function of
the vector Bp, the unknown camera-to-base transformation {CBR, CpB}, and the
unknown configurations of the mirrors with respect to the camera, v1, . . . ,vNv .

4 Camera-to-Base Transformation Analytical Solution

We address the problem of obtaining an analytical solution for all the unknown
quantities in two steps: first, we obtain an analytical solution for the camera-to-
base frame transformation, as well as for the mirrors’ configurations. Once these
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quantities have been determined, we subsequently obtain an analytical solution
for the 3D positions of the reconstruction points, as explained in Sect. 5.

4.1 Relationship to PnP

To obtain the analytical solution for the camera and mirror configurations, we
exploit the similarity of our problem to the n-point perspective pose estimation
problem (PnP). Specifically, in the standard formulation of PnP we seek the six-
DOF transformation {CBR, CpB} between a camera frame {C}, and a base frame
{B}, given perspective measurements of Nf fiducial points, Bpi, i = 1, . . . , Nf :

zi = h(Cpi) + ηi, where

[
Cpi
1

]
=

[
C
BR CpB
01×3 1

] [
Bpi
1

]
. (10)

By comparison of (10) to (5) and (9), the relationship between the mirror-based
calibration and PnP problems becomes evident. Specifically, while in the PnP
the only unknowns are {CBR, CpB}, in the mirror-based calibration problem we
have additional unknowns, corresponding to the mirror configurations. All these
unknowns, however, are “encoded” in the pair {ANv ,bNv}, which appears in (5)
and (9) in the same way as the pair {CBR, CpB} does in (10). This similarity
allows us to use the solution of the PnP, which is a well-studied problem, as a
first step towards solving the multi-mirror calibration problem. Specifically, we
first exploit the similarity to PnP to solve for the pair {ANv ,bNv}, and next
utilize (6) and (7) to solve for the camera and mirror configurations, as explained
in Sect. 4.2.

In order to compute the pair {ANv ,bNv}, we need to take the special prop-
erties of the matrix ANv into consideration. Specifically, ANv is the product of
Nv Householder reflection matrices and one rotation matrix. As a result, ANv is
unitary, and when Nv is even it is a rotation matrix (its determinant is equal to
+1). Therefore, when Nv is even we can directly apply a PnP solution method
to obtain ANv and bNv . Any algorithm is suitable here; in the experiments pre-
sented in this paper, Nf = 3, and we solve the corresponding P3P problem using
the solution presented by Fischler and Bolles [2].

When Nv is odd, the determinant of ANv is equal to -1, and therefore we
cannot directly employ a PnP solution method. However, we can use a very sim-
ple transformation to bring the problem to a form in which the PnP algorithms
can be directly applied. Specifically, we can transform ANv into a rotation ma-
trix by applying an additional known reflection of our choice. For instance, if
we change the sign of the y coordinates of all points in the image, this corre-
sponds to applying a reflection across the xz-plane in the camera frame. Thus,
the measurement equation in this case becomes z = h(C̆p) + η, where[

C̆p
1

]
=

[(
I3 − 2e2e

T
2

)
03×1

01×3 1

] [
Cp′

1

]
=

[(
I3 − 2e2e

T
2

)
03×1

01×3 1

] [
ANv bNv
01×3 1

] [
Bp
1

]
=

[
C̆
BR C̆pB
01×3 1

] [
Bp
1

]
, (11)
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where e2 =
[
0 1 0

]T
. Note that the matrix C̆

BR is a rotation matrix, not a
reflection. Thus, after negating the y-coordinate of all the points in the image,
we can solve the PnP to obtain solution(s) for the unknown transformation
{C̆BR, C̆pB}. Subsequently, given the PnP solution, we recover ANv and bNv
through the following relationship which follows directly from (11)[(

I3 − 2e2e
T
2

)
03×1

01×3 1

] [
C̆
BR C̆pB
01×3 1

]
=

[
ANv bNv
01×3 1

]
. (12)

4.2 Analytical Solution for the camera and mirror configurations

Fig. 3. Mirror configurations for the 2-
mirror case depicted as a ternary tree.

We next describe how we use the
computed {ANv ,bNv}, to analytically
solve for the camera-to-base transfor-
mation and the configuration of the
mirrors. Before presenting our analyt-
ical solution, we discuss the conditions
necessary for such a solution to exist.

We start by noting that, in order
to compute a discrete set of solutions
to the PnP problem in the preceding
section, at least three non-collinear
points are required. For a unique solution, at least four points in a general
configuration are necessary [3]. By analogy, in the mirror-based calibration prob-
lem at least Nf = 3 known points are needed in order to obtain solutions for
{ANv ,bNv}, and when Nf ≥ 4 the solution is unique in each image (barring
degenerate configurations).

We now examine the number of unknowns in the system, and compare it with
the number of available constraint equations. Note that, ANv is a unitary matrix,
and only has 3 degrees of freedom. Thus determining the pair {ANv ,bNv} from
Nf ≥ 3 points in each image only provides us with 6 independent constraint
equations (3 for the unitary matrix ANv , and 3 for the vector bNv ), which we
can utilize to solve for the camera and mirror configurations. Thus, from Nc
images, we can obtain 6Nc independent constraints.

On the other hand, if Nv mirrors are used, then each of the mirrors introduces
3 unknowns in the system (the elements of vector vi). Moreover, the 6-DOF
camera-to-base transformation introduces 6 additional unknowns. Therefore, if
in each of the Nc images each mirror moves to a new configuration, the total
number of unknowns is equal to 3NvNc+6. Thus, if Nv > 1, moving each mirror
to a new configuration in each image results in a problem where the number
of unknowns, 3NvNc + 6, is larger than the number of constraints available,
6Nc. Therefore, some restrictions on the mirrors’ motion must be imposed, for
a unique solution to exist.

Our strategy is to move the mirrors in a specific order so as to isolate differ-
ent system unknowns in each observation. Fig. 3 depicts our approach for the
two-mirror case. For each configuration of mirror 1, we move mirror 2 in three
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different locations and record an image. Each “leaf node” in the ternary tree
corresponds to one image, and tracing the path from the leaf node to the root
of the tree specifies the mirror configurations for that image (v`(m), denotes the
m-th configuration of mirror `). The mirror-configuration tree helps visualize the
order in which the mirrors move and the unknown quantities are computed.

In the two-mirror case, the total number of mirror 1 configurations is three,
and the total number of mirror 2 configurations is nine. In the general case of
Nv mirrors, this strategy results in 6 + 3× (3 + 32 + . . .+ 3Nv ) = 6 + 9

2 (3Nv − 1)
unknowns, and 6 × 3Nv constraints, which is an over-determined problem. We
stress that, even though the problem is overdetermined, using a smaller number
of images is not possible. At least three different configurations of each mirror
are necessary, in order to compute a unique solution for the camera-to-base
transformation. If only two configurations per mirror are used, then a continuum
of solutions exists [10]. This dictates the proposed mirror motion strategy.

We next describe our algorithm for determining all the mirror-configuration
vectors, v`(m), as well as the transformation {CBR, CpB}. This algorithm is a
recursive one: first, all the mirror configurations for mirror Nv are determined,
then we proceed to mirror Nv − 1, and so on.
Determining the configuration of the Nv-th mirror: Specifically, once
{ANv(m),bNv(m)}, m = 1, . . . , 3Nv , are obtained using the PnP solution, we ex-
ploit the structure of (6) and (7) to compute the vectors vNv(m), m = 1, . . . , 3Nv .
We proceed to compute these vectors in sets of three, corresponding to those im-
ages for which the configurations of mirrors 1 through Nv − 1 remain fixed.

To demonstrate the procedure, we focus on vNv(m), m = 1, 2, 3, which are
the first three configurations for mirror Nv. In this case

ANv(m) = MNv(m)ANv−1(1), m = 1, 2, 3, (13)

where M`(m) denotes the Householder reflection matrix for the m-th configu-
ration of mirror `. For each pair (m,m′) of mirror-Nv configurations, if we let
rmm′ be a unit vector perpendicular to both vNv(m) and vNv(m′), we obtain

ANv(m)A
T
Nv(m′)rmm′ = MNv(m)ANv−1(1)A

T
Nv−1(1)M

T
Nv(m′)rmm′

= MNv(m)M
T
Nv(m′)rmm′ = rmm′ , (14)

where we exploited ANv−1(1)A
T
Nv−1(1) = I3, and vTNv(m)rmm′ = vTNv(m′)rmm′ =

0. The above result states that rmm′ is the eigenvector of ANv(m)A
T
Nv(m′) cor-

responding to the unit eigenvalue. Since ANv(m)A
T
Nv(m′) is a known matrix, we

can compute rmm′ up to sign. Moreover, since the vectors rmm′ and rmm′′ , for
m′ 6= m′′, are both perpendicular to vNv(m), we can use the following expressions
to obtain the vectors vNv(m), m = 1, 2, 3, up to scale:

vNv(1) = cNv(1) r13 × r12, vNv(2) = cNv(2) r21 × r23, vNv(3) = cNv(3) r13 × r23, (15)

where cNv(m), m = 1, 2, 3 are unknown scalars. In order to determine these
scalars, we note that they appear linearly in (7), along with the vector bNv−1(1).
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Using these equations we can formulate the over-determined linear system:

MNv(1) 2r13 × r12 03×1 03×1

MNv(2) 03×1 2r21 × r23 03×1

MNv(3) 03×1 03×1 2r13 × r23




bNv−1(1)

cNv(1)

cNv(2)

cNv(3)

=

bNv(1)

bNv(2)

bNv(3)

 . (16)

The solution of this system provides us with the scale factors cNv(m), m =
1, 2, 3, which, in turn, allows us to fully determine the vectors vNv(m), m =
1, 2, 3, using (15). Following the same procedure, we determine the configuration,
vNv(m), of mirror Nv for the remaining images, m = 4, . . . , 3Nv .
Dealing with multiple solutions: Up to this point we have assumed that
each of the PnP solutions was unique, in order to simplify the presentation of
the analytical solution. However, in the general case multiple PnP solutions may
exist (e.g., up to 4 admissible ones when Nf = 3). In that case, we compute an
analytical solution by following the above procedure for each of the PnP solu-
tions, and select the solution which yields the minimum residual in the solution
of (16). If the measurements were noise-free, we would expect only one solution
to have zero error, since the nonlinear system we are solving is over-constrained.
In the realistic case where noise is present, we have found that choosing the
solution with the minimum error is a suitable way of rejecting invalid solutions.
Solving for the remaining mirror vectors, and the camera-to-base
transformation: Once a solution for the vectors vNv(m) has been computed,
we proceed to eliminate the unknowns corresponding to mirror Nv from the
problem, using [see (6) and (7)]:

ANv−1(j) = M−1
Nv(m)ANv(m) (17)

bNv−1(j) = M−1
Nv(m)

(
bNv(m) − 2 vNv(m)

)
. (18)

for m = 1, . . . , 3Nv , j = dm/3e (where d·e denotes the round-up operation). Note
that since three different images (three different values of m) correspond to the
same index j, we can obtain three estimates of ANv−1(j) and bNv−1(j). Due to the
presence of noise, these estimates will generally be slightly different. To obtain a
single, “average” estimate for ANv−1(j) and bNv−1(j), we employ a least-squares
procedure similar to the one presented in [10]. Proceeding recursively as above,
we can compute all mirrors’ configurations. Moreover, as explained in Sect. 3.1,
the camera-to-base transformation A0 and b0, can be obtained using the same
process.

5 Analytical Solution for Scene Reconstruction

In the previous sections, we discussed how to analytically determine the camera-
to-base transformation and the mirror configurations using the observations of
the fiducial points. We now turn our attention to computing the 3D coordi-
nates of all reconstruction points, whose coordinates are not known a priori. We
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describe an analytical method to compute their coordinates, which will be subse-
quently refined in an MLE for determining a more precise estimate while account-
ing for measurement noise. We assume that each image contains the reflections
of at least three fiducial points and Nr reconstruction points. The fiducial points
are utilized to determine the mirror vectors as well as the camera-to-base trans-
formation (see Sect. 4.2), and the observations of the Nr reconstruction points
are utilized to compute a 3D point-cloud representation of important objects in
the scene (e.g., the robot chassis) with respect to the base frame.

Consider a single reconstruction point, Bp, observed via reflection through
Nv mirrors, for example, in Nc images. If we denote the measured unit-vector
direction towards the reflected point as Cp̂′j , then we obtain

sj
Cp̂′j = ANv(j)

Bp + bNv(j), j = 1, . . . , Nc, (19)

where the scalar sj is the unknown distance to the reflected point in image j. This
measurement model is equivalent to the perspective projection model defined
in Sect. 3.1. Equation (19) is linear in the unknowns sj and Bp. When Bp is
observed in at least two images (i.e., Nc ≥ 2), we can form an overdetermined
set of linear equations (Nc + 3 unknowns and 3Nc constraints), which is solved
to obtain the distance to the reconstruction point in each image, as well as the
point’s coordinates in the base frame:

ANv(1) −Cp̂′1 . . . 03×1

ANv(2) 03×1 . . . 03×1

...
. . .

...
ANv(Nc) 03×1 . . . −Cp̂′Nc



Bp
s1

...
sNc

=


−bNv(1)

−bNv(2)

...
−bNv(Nc)

 . (20)

6 MLE Refinement of Analytical Solutions

After the analytical solutions for the mirror configurations, camera-to-base trans-
formation, and position of the reconstruction points have been computed, we
refine them by applying maximum likelihood estimation. The vector of all un-
known parameters is given by:

x =
[
CpTB

C q̄TB
CvT1(1) . . . CvTNv(3Nv )

BpT1 . . . BpTNr

]T
, (21)

where Nr is the number of reconstruction points and C q̄B is the unit quaternion
of rotation between frames {B} and {C}. We use Z to denote the set of all
available measurements, and the likelihood of the measurements is given by

L(Z; x) =

Np∏
i=1

Nc∏
j=1

p(zij ; x) =

Np∏
i=1

Nc∏
j=1

1

2πσ2
η

exp
[
− (zij−hij(x))T (zij−hij(x))

2σ2
η

]
, (22)

where hij(x) is the measurement function defined in (9), and Np = Nr+Nf is the
total number of reconstruction and fiducial points. Maximizing the likelihood,
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Fig. 4. Two-mirror case: Analytical solution and MLE accuracy for attitude and posi-
tion plotted versus: (a) pixel noise and (b) mirror distance. Plots (c) and (d) depict the
average reconstruction error for the least-accurately reconstructed point versus pixel
noise and distance.

in the presence of i.i.d. Gaussian noise, is equivalent to minimizing the following
non-linear least-squares cost function:

J(x) =
∑
i,j(zij − hij(x))T (zij − hij(x)), (23)

which is done iteratively using the Levenberg-Marquardt (LM) algorithm for
estimating the parameter vector in (21).

7 Simulations

In this section, we present simulation results that demonstrate the feasibility of
computing the camera-to-base transformation using the proposed approach.

We evaluate the accuracy of the analytically computed camera-to-base trans-
formation (see Sect. 4.2) as well as the uncertainty in the MLE estimates. In
particular, we investigate how the performance is affected by pixel noise, and by
the distance between the camera and the mirrors. We consider a base case, in
which three fiducial points placed at the corners of a right triangle, with sides
measuring 20× 20× 20

√
2 cm, are observed in 200 images. The points are seen

via their reflections in two planar mirrors, which are placed at distances of 0.5 m
in front of and behind the camera, and rotated by 30 deg in two directions.
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In Fig. 4, we plot the errors in the position and attitude estimates of the
analytical solution along with those of the MLE. To evaluate the analytical solu-
tion’s accuracy, we depict the RMS error for the least-accurate axis averaged over
100 Monte-Carlo runs. The MLE accuracy is shown by the standard deviation
(1σ) for the least certain axis computed from the covariance estimate.

– As expected, by increasing the pixel noise, the accuracy of the analytical
solution, as well as of the MLE decreases.

– As the distance between the camera and the mirrors increases, the accuracy
also decreases. We note that the effect is more pronounced than in the single-
mirror scenario [10], since in the two-mirror simulation both mirrors are
moving farther away from the camera, and the effective depth to the scene
is increasing at twice the rate.

Note that using the analytical solution as an initial guess for the MLE enables
the latter to converge to the correct minimum 100% of the time for non-singular
measurement configurations. On average, fewer iterations were required (typi-
cally 4) when compared to using a näıve initial guess (typically 18). This shows
that the availability of a precise analytical solution improves the speed and ro-
bustness of the overall estimation process.

In order to evaluate the accuracy of the 3D reconstruction, we randomly
populated the simulation environment with 60 points placed near the fidu-
cial markers. The average RMS error (over 100 simulations), for the least-
accurately reconstructed point, is plotted versus pixel noise and mirror distance
[see Fig. 4(c) and (d)]. Note that even for large distances, or pixel disturbances,
the analytical reconstruction error is 5 cm or less.

8 Experiments

The proposed method was also evaluated in real-world experiments to assess its
performance and effectiveness in practice. In particular, we consider the case of
two mirrors with a camera-equipped mobile robot to compute the transformation
between the camera frame of reference and the robot-body frame (see Fig. 1).
Frame {B} is right-handed with its x-axis pointing towards the front of the robot
and its z-axis pointing upwards. The rear-right fiducial marker coincides with the
origin of {B}, while the other two markers lie on its x- and y-axis, respectively.
Due to the relative placement of the camera and the fiducials, they cannot be
observed directly by the camera nor can they be seen in the reflection in the
front mirror [see Fig.s 5(a) and 5(b)]. Instead, the markers were only visible via
their double reflections, first in the rear mirror, then in the front mirror.

The camera was connected to the robot’s on-board computer via Firewire,
and recorded 900 gray-scale images at 10 Hz with resolution 1024 × 768 pix-
els. During the experiment the markers were tracked using the Kanade-Lucas-
Tomasi Feature Tracker (KLT) [13]. The front mirror was moved continuously
through the image sequence, while the rear mirror was moved in three con-
figurations (total 300 images per configuration). The analytically computed
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(a) (b)

Fig. 5. (a) Image recorded during experimentation. Two reflections of the robot are
visible which provide different viewpoints of the chassis. (b) The same image with the
single mirror and two-mirror reflections highlighted in blue and purple, respectively.
The fiducial points are only visible through the two-mirror reflection.

camera-to-base transformation is CpB =
[
11.26 −4.48 −52.48

]T
cm, and CqB =[

−0.5005 0.5063 −0.4931 0.4998
]T

, which is very close to the manually deter-
mined estimate.

We initialized the MLE with the analytically computed quantities (both the
camera-to-base transformation and the mirror vectors in all images), and the
Levenberg-Marquardt minimization converged after three iterations. The final

estimate for translation and orientation was CpB =
[
10.54 −4.42 −53.01

]T
cm,

and CqB =
[
−0.5026 0.5040 −0.4931 0.5000

]T
, respectively. The corresponding

3σ bounds computed from the diagonal components of the MLE estimated co-
variance were

[
9.75 6.92 6.44

]
mm in position and

[
0.445 0.684 0.356

]
deg in

orientation.

9 Conclusions and Future Work

In this paper, we presented a method for point-based extrinsic camera calibration
and 3D scene reconstruction in the challenging case when the points of interest
lie outside the camera’s direct field of view. To address this issue, we utilize one
or more moving planar mirrors to extend the area which the camera can view.
We do not assume prior knowledge about the mirror size or placement with re-
spect to the camera. Instead, the only information we exploit are the reflections of
fiducial points, whose coordinates are known a priori, and reconstruction points,
whose coordinates are unknown and must be calculated from the measurements.
We introduced an analytical approach to determine the mirror configurations,
the camera-to-base transformation, and the base-frame coordinates of the recon-
struction points. Subsequently, we refined the analytically computed quantities
using an MLE to produce high-accuracy estimates, along with a measure of the
uncertainty in each parameter’s estimate. We carried out simulation trials to
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verify the correctness of the proposed algorithm, as well as to evaluate its sen-
sitivity to various system parameters. Furthermore, we validated the real-world
performance of our approach, demonstrating its effectiveness and reliability in
practical implementations.

In our ongoing work, we are investigating the feasibility of multi-mirror
strategies for complete robot-body 3D reconstruction. Furthermore, we plan to
extend this method to the case where no fiducial points are available (i.e., none
of the points’ coordinates are known a priori), but are estimated along with the
camera-to-base transformation and the mirror configurations.
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