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Abstract—In this paper, we address the problem of concurrent
extrinsic calibration of a camera to a base frame of reference and
3D robot-body reconstruction, using observations of points that
can only be observed via reflection in one or more mirrors. In our
scenario, the camera measures reflections of fiducial points, whose
coordinates in the base frame attached to the robot body are
known, and reconstruction points, whose coordinates are initially
unknown and must be estimated. No prior information about the
mirrors’ placements or motions with respect to the camera is
available a priori. Instead, we employ the feature measurements
in order to analytically compute (i) the position and orientation of
each mirror in each image, (ii) the six-degree-of-freedom (DOF)
camera-to-base frame transformation, and (iii) the base-frame
coordinates of the reconstruction points. We study the conditions
necessary for solutions to exist and show that, in the single-mirror
scenario, at least three fiducial points must be observed in three
images to uniquely recover the camera-to-base frame transforma-
tion, while each reconstruction point should be viewed twice. We
subsequently refine the analytic solution in a maximum-likelihood
estimator (MLE), which obtains a statistically optimal estimate
of the unknown quantities by accounting for the measurement
noise. We study the algorithm’s performance under variations of
system parameters with simulations, and show the applicability
of our method to real-world problems with experimental trials.

Index Terms—Extrinsic camera calibration, catadioptric sys-
tem, 3D reconstruction, multiple view geometry.

I. INTRODUCTION

CAMERAS are utilized in a wide variety of applica-
tions ranging from surveillance and crowd monitoring

to vision-based robot localization. In order to obtain mean-
ingful geometric information from a camera, two calibration
procedures must be completed. The first is intrinsic calibration,
that is, determining the internal camera parameters (e.g., focal
length, principal point, and distortion coefficients) that affect
the image measurements [4], [5]. The second is extrinsic
calibration, which is the process of computing the six-degree-
of-freedom (DOF) transformation between the camera and
a base frame of reference [1], [2], [6], [7], [8], [9]. In a
surveillance application, the base frame may be the room or
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Fig. 1. A camera-equipped robot observes its reflection in two mirrors
from several viewing angles. The front mirror (highlighted in blue) provides
a direct reflection, whereas the double reflection comes from the back mirror
(highlighted in purple). As the mirrors are moved, the robot tracks fiducial
and reconstruction points with its on-board camera. These point-feature
observations are employed to estimate the coordinate transformation between
the camera and robot body, as well as a 3D point-cloud representation of the
robot chassis.

building coordinate system, whereas on a mobile robot, the
base frame could be the robot-body frame (see Fig. 1). In
addition to intrinsic and extrinsic camera calibration, many
tasks also require determining the dimensions of a portion of
the 3D scene [10], [11], [12], [13]. In an indoor surveillance
scenario, knowledge of the room geometry, as well as of the
locations of objects (e.g., tables and chairs) can aid in tracking
and interpreting a target’s actions. Similarly, in the case of a
camera-equipped mobile robot, knowing the precise size and
shape of the robot chassis enables more accurate path planning
and obstacle avoidance.

Both extrinsic calibration and 3D reconstruction may be
accomplished by hand-measuring or approximating the per-
tinent quantities; however, this can be time consuming and
the results are often inaccurate. In particular, through manual
measurements we can only determine the location of the
camera housing and not the focal point itself, which is the
true center of the camera’s frame of reference. Furthermore,
anytime the vision system changes (e.g., when the camera
is replaced or moved to a different location) this laborious
procedure must be repeated. For these reasons, it is imperative
to develop automatic methods for estimating the camera-to-
base transformation and performing 3D reconstruction.

Extrinsic camera calibration has been widely studied for
the case in which known points are directly observed by the
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camera. This problem was introduced by Grunert in 1841 [14],
and has since received significant attention from the computer
vision community [15], [16], [17]. Unfortunately, in many
realistic scenarios the known points may not lie within the
camera’s field of view. Figure 1 depicts an example in which
a mobile robot is equipped with a forward-facing camera
that cannot view any portion of the robot chassis. Instead,
it must move in front of a mirror to see its body. In this
work, we focus on these more limiting scenarios, in which
the points of interest do not lie within the camera’s field
of view but can only be observed through reflection using
one or more planar mirrors. This framework for extrinsic
camera calibration is significantly more flexible than previous
formulations which required direct observations of points, and
enables extrinsic calibration and 3D reconstruction in a wider
range of applications.

Specifically, the objective of our work is to design an au-
tomated procedure which accurately determines the unknown
quantities by exploiting measurements of point features from
different viewing angles. The point features comprise: (i) fidu-
cial points, whose coordinates in the base frame (i.e., robot-
body frame) are known a priori, and (ii) reconstruction points,
whose coordinates are unknown and will be computed. Since
the points lie outside the camera’s field of view, we maneuver
mirrors to provide the camera with multiple views of the
robot body; however, no prior information about the mirrors’
sizes or motions with respect to the camera is assumed.
Instead, the configurations of the mirrors and the camera-to-
base transformation are treated as unknowns to be computed
from the measurements.

The main contributions of this paper are:
• We carry out an analysis of the mirror-based extrinsic

calibration problem to determine the existence and num-
ber of solutions, as a function of the number of fiducial
points and number of images available.

• Based on the above analysis, we identify the minimal
problem formulation and propose a method for analyt-
ically computing the camera-to-base transformation, in
cases where either one or more mirrors are employed to
observe the fiducial points.

• We develop a method for analytically computing the
3D base-frame coordinates of each reconstruction point
observed by the camera.

• We formulate a maximum-likelihood estimator (MLE)
for refining the analytically computed estimates of all
quantities of interest, in order to obtain a statistically
optimal solution.

These contributions offer an in-depth analysis of, as well as
solution methods for, the problem of mirror-based extrinsic
camera calibration. Therefore, the work presented in this paper
provides both a better intuitive understanding of the problem,
as well as algorithmic tools that are applicable in practical
scenarios.

The rest of the paper is structured as follows: In the next
section, we discuss related work in the literature, and compare
our work to existing approaches. Section III presents our
problem formulation, as well as the analysis of the number
of solutions. The analytic solution for the minimal problem is

described in Section IV, while Section V details the analytic
approach for computing the 3D base-frame coordinates of the
reconstruction points. The MLE for refining the analytically
computed quantities is formulated in Section VI. Finally, Sec-
tions VII and VIII present our evaluation of the performance
of the developed algorithms, both in simulation (Section VII)
and in real-world experiments with a camera-equipped robot
(Section VIII).

II. RELATED WORK

We begin with a discussion of the related approaches that
address camera-to-base calibration, sensor-to-sensor calibra-
tion, hand-eye calibration, and catadioptric systems.

A. Camera-to-base calibration

The task of computing the transformation between a camera
and a generic base frame of reference has been widely studied.
Most existing methods rely on direct observations of fiducial
points whose 3D base-frame coordinates are known. When
three fiducial points are observed in a single image, this
problem is termed the Three Point Perspective Pose Estima-
tion Problem (P3P) [14]. Numerous algebraic and geometric
studies of P3P have shown that in generic configurations there
exist up to eight real solutions, four of which may lie in front
of the center of perspectivity [15], [16], [17], [18]. Extensions
of P3P to four observed points (P4P) and n observed points
(PnP) have also been presented [19], [20]. In contrast to these
approaches for camera-to-base calibration, we do not require
the fiducial points to lie within the camera’s field of view.
Relaxing this constraint is critical for enabling calibration in
a wide variety of previously unaddressed scenarios (e.g., see
Fig. 1).

B. Camera-to-sensor calibration

A related problem is that of camera-to-sensor calibration,
which seeks to compute the transformation between a cam-
era and another sensor by correlating their measurements.
Numerous cases have been addressed, including calibration
to an odometry sensor [21], [22], an inertial measurement
unit (IMU) [7], and a laser range finder [8], [23], [9]. One
key difference of all these methods, compared to the mirror-
based calibration approach we explore in this work, is that
they require the presence of two sensors, rather than just the
camera. Moreover, these methods typically require that both
the camera and the additional sensor move, which enables the
two sensors to estimate their motion with respect to a common
frame.

C. Hand-eye calibration

Another related problem is that of hand-eye calibration,
i.e., the process of determining the six-DOF transformation
between a camera and a tool, which are both mounted on a
robot manipulator [24], [25], [26], [27], [28]. The hand-eye
problem is typically solved by correlating the measurements
from the camera and the joint encoders, which measure the
displacements of the manipulator joints. Specifically, using
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the camera images and fiducial points, one can determine the
transformation between the camera and the robot-base frames.
Subsequently, the camera-to-tool transformation is calculated
by combining the estimated camera-to-robot-base transfor-
mation, and the robot-base-to-tool transformation, which is
assumed to be known. This necessitates the availability of
precise technical drawings and limits the applicability of
these methods, since they cannot determine the camera-to-base
transformation for a generic base frame. Unlike the hand-eye
problem, we only exploit information from a single sensor, and
we do not require knowledge of the camera’s motion (i.e., we
do not utilize joint encoders).

D. Catadioptric systems
We turn our attention to catadioptric systems, which are

camera systems that employ mirrors to perform synthetic
stereo vision. These are of interest because they bear re-
semblance to our setup, in which one or more mirrors are
utilized to compute the camera-to-base transformation and the
3D coordinates of the reconstruction points. Several differ-
ent synthetic-stereo methods have been presented, utilizing
a single camera and planar [11], [12], [29], or conic mir-
rors [30], reflections from free-form surfaces [31], or trinocular
vision [13]. Additionally, stereo has been achieved with a
static camera and a moving spherical mirror [32], as well as
with a moving camera and two stationary spherical mirrors
of known radii [33]. In contrast to the approaches above, we
do not exploit a priori knowledge about the size or location
of the mirrors. Additionally, in our method each point is only
observed once per image, via its reflection in one or more
moving planar mirrors. This requires a substantially different
mathematical treatment.

Another catadioptric system that employs a moving planar
mirror for catadioptric stereo vision was introduced by Jang
et al. [34]. In their approach, the mirror position and orienta-
tion (pose) was determined for each image using observations
of known markers on the mirror, and vanishing points in
the image. After determining the pose of the mirror in all
images, multiple view scene reconstruction was accomplished
using all of the reflection images. In contrast to this approach,
we address a broader problem which encompasses both 3D
reconstruction and camera-to-base frame calibration, without
employing known markers on the mirror. This significantly in-
creases the difficulty of the problem. Furthermore, we address
the most general case in which Nv ≥ 1 mirrors are employed.

To the best of our knowledge, the first work addressing pose
determination without a direct view of the scene was carried
out by Sturm and Bonfort [35]. In particular, the authors seek
to determine the pose of the camera with respect to a known
object via reflections of the object in a single planar mirror.
The analysis focuses on the two-view scenario, in which the
mirror is moved in two locations, and the camera pose can
be determined up to one unknown DOF. An extension to
the case of more than two images recorded using the same
mirror is also described. However, the issues of non-unique
P3P solutions and multiple mirrors are not addressed, and no
investigation of the method’s accuracy is conducted. In our
work, these limitations are removed.

Kumar et al. [36] presented a vision system that utilized
a moving planar mirror to determine the transformations
between multiple cameras with non-overlapping fields of view.
A mirror was maneuvered in front of the camera rig, providing
each camera with at least five views of a calibration grid,
whose pose was fixed with respect to the cameras. Subse-
quently, the measurement constraints were transformed into a
linear system of equations that was solved for the unknown
extrinsic parameters of each camera. In contrast to that work,
our approach requires fewer images (only three) for the single-
mirror case in order to obtain a unique solution, and is also
applicable to the case where more than one mirror is used.

Our previous conference publications [1], [2], [3] have
also addressed the problem of mirror-based extrinsic camera
calibration. Specifically, [1] presents a maximum-likelihood
estimator for the camera extrinsic parameters and mirror
configurations in the single-mirror case. Under the assumption
of independent Gaussian pixel noise, this estimator takes the
form of a nonlinear least-squares problem, solved by iterative
Gauss-Newton minimization. Despite its ease of implementa-
tion, this method has the drawback that without an accurate
initial guess, the minimization may require many iterations
to converge or even fail to find the correct solution. For this
reason, in [2] we presented an analytic solution to the single-
mirror extrinsic calibration problem, which can be employed
to provide a good initial guess for the maximum-likelihood
estimator. In [3], we extended the single-mirror solution to the
case where more than one mirror is used, and also presented a
solution for robot-body reconstruction based on observations
through multiple reflections. The current paper presents a
comprehensive analysis of both the single- and multi-mirror
extrinsic calibration and robot-body reconstruction problems.
We discuss in detail the conditions under which unique so-
lutions are feasible, and present both an analytic algorithm
as well as a maximum-likelihood solution for estimating the
unknown quantities. Additionally, the paper includes extensive
simulation and real-world experimental results, which demon-
strate the performance of the methods presented in several
setups.

III. PROBLEM FORMULATION

In what follows, we first present the single- and multiple-
mirror measurement models, and discuss the relationship be-
tween the mirror-based calibration problem and the n-point
pose estimation problem (PnP). Subsequently, we describe the
conditions under which a solution to the problem can be found.

A. Measurement Model

We start by describing the measurement equations for each
of the points observed by the camera. We employ a perspective
camera that is intrinsically calibrated, e.g., by a method such
as the one in [37]. Only one observation of each point is
available in each image: its reflection through the Nv mirrors.
If we let p′ denote the reflected point seen by the camera,
then the normalized image coordinates of the measurement
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Fig. 2. In this illustration, the camera observes Cp′, which is the reflection
of p expressed in {C}. The base frame is {B}, while {C} is the camera
frame of reference, and {C∗} is the equivalent imaginary camera frame which
lies behind the mirror. The mirror vector, Cv1 ≡ v1, is the shortest vector
from the origin of {C} to the reflective surface. The vector CpB denotes the
origin of {B} with respect to {C}, while Bp and Cp denote the coordinates
of p expressed in {B} and {C}, respectively. The dash-dotted green line is
the optical path of the reflection.

are described by the equation1:

z =
1

p3

[
p1

p2

]
+ η = h(Cp′) + η (1)

Cp′ =
[
p1 p2 p3

]T
, (2)

where η is the noise, which is modeled as zero-mean white
Gaussian with covariance matrix σ2

ηI2. The relationship be-
tween the actual robot-body point, p, and its reflection, p′,
depends on the mirror-reflection geometry, described next.

1) Single-mirror geometry: When the camera observes p
via its reflection in a single mirror, from the geometry of Fig. 2
we obtain:

Cp′ = Cp + 2dp
Cv1

‖Cv1‖
(3)

dp = ‖Cv1‖ −
CvT1
‖Cv1‖

Cp, (4)

where Cp′ is the vector from the origin of the camera coor-
dinate frame, {C}, to the reflected point p′, Cp is the vector
from {C} to p, Cv1 is the shortest vector from the origin of
{C} to the reflective surface (which we term “mirror vector”),
and dp is the distance between the mirror and the point p. In
the remainder of the paper, we will drop the reference frame
from the mirror vector in order to simplify the notation (i.e.,
Cv1 ≡ v1).

In order to take advantage of the known coordinates of the
fiducial points with respect to the base frame attached to the
robot body, {B}, we make use of the frame-transformation
equation between Cp and Bp:

Cp = C

BR
Bp + CpB, (5)

1Throughout this paper, Xy denotes a vector y expressed with respect to
frame {X}, XWR is the rotation matrix rotating vectors from frame {W} to
{X}, and XpW is the origin of {W}, expressed with respect to {X}. In is
the n× n identity matrix, and 0m×n is the m× n matrix of zeros.

where C
BR is the matrix which rotates vectors from {B}

to {C}, and CpB is the origin of {B} with respect to
{C}. Note that the pair {CBR, CpB} describes the camera-
to-base transformation, which we seek to determine through
the extrinsic calibration procedure. By substituting (4) and (5)
into (3), after some manipulation, we obtain:

Cp′ = M1 (CBR
Bp + CpB) + 2v1 (6)

where M1 is the Householder transformation matrix corre-
sponding to the reflection in mirror 1, given by:

M1 =

(
I3 − 2

v1v
T
1

vT1 v1

)
. (7)

It is useful to express (6) in homogeneous coordinates, as:[
Cp′

1

]
=

[
M1 2v1

01×3 1

] [
C
BR

CpB
01×3 1

] [
Bp
1

]
=

[
A1 b1

01×3 1

] [
Bp
1

]
. (8)

In the last equation, the pair A1 = M1
C
BR and b1 =

M1
CpB+2v1, defines a composite Euclidean/reflection trans-

formation, which converts Bp into Cp′. Intuitively, we can
consider the pair {A1,b1} as a transformation from {B} to an
imaginary camera, {C∗}, with a left-handed reference frame,
which lies behind the mirror and observes the true points (see
Fig. 2).

Equations (1) and (8) define the measurement model in the
single-mirror case. The observed image coordinates, z, are a
function of the known vector Bp, the unknown camera-to-base
transformation {CBR, CpB}, and the unknown configuration of
the mirror with respect to the camera, v1. Note that, while in
general six DOF are needed to fully determine the placement
of the mirror, only three DOF appear in the measurement
equation, via the 3× 1 vector v1. The remaining three DOF,
which correspond to rotations of the mirror about v1 and
translations of the mirror within the mirror plane, do not affect
the measurements.

2) Multiple-mirror geometry: We next present the geomet-
ric relationships arising in the multiple-mirror case, starting
for simplicity with the two-mirror case, which is shown in
Fig. 3. When two mirror reflections are required to view the
robot-body, the optical ray from the point to the camera is first
reflected by mirror 1, to yield the point p′′, and then reflected
by mirror 2, to yield the point p′, which is the one observed by
the camera [see (1)]. From Fig. 3, by analogy to the previous
case of a single mirror, we can write the following expression
for p′′

Cp′′ =

(
I3 − 2

v1v
T
1

vT1 v1

)
Cp + 2v1 = M1

Cp + 2v1. (9)

While the point p′ is expressed as a function of p′′ as:

Cp′ =

(
I3 − 2

v2v
T
2

vT2 v2

)
Cp′′ + 2v2 = M2

Cp′′ + 2v2, (10)

where M2 is the reflection matrix corresponding to mirror 2.
We substitute (10) into (9) to obtain:

Cp′ = M2 (M1
Cp + 2v1) + 2v2. (11)
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Fig. 3. Point p is visible to the camera {C} via its double reflection, Cp′, which is generated by first reflecting p in mirror 1, to obtain p′′, and then
reflecting p′′ in mirror 2 to obtain p′. The mirrors are described by the mirror vectors, Cv1 and Cv2, which are the shortest vectors from the origin of
{C} to the respective reflective surfaces. The points p′′ and p are at distance dp′′ from mirror 1, while p′′ and p′ are at distance dp′ from mirror 2. The
dash-dotted green line denotes the optical path of the reflection.

Exploiting the relationship Cp = C
BR

Bp+ CpB, and rewriting
(11) in homogeneous coordinates, we obtain[

Cp′

1

]
=

[
M2 2v2

01×3 1

] [
M1 2v1

01×3 1

] [
C
BR

CpB
01×3 1

] [
Bp
1

]
=

[
A2 b2

03×1 1

] [
Bp
1

]
, (12)

where

A2 = M2 M1
C

BR (13)
b2 = M2 M1

CpB + 2M2v1 + 2v2. (14)

By comparing (12) to (8), we observe that the use of
a second mirror resulted in the introduction of a second
reflection transformation in the expression for Cp′. Extending
this property to the general case of Nv mirrors, we obtain the
following expression for Cp′:[
Cp′

1

]
=

[
MNv 2vNv
01×3 1

]
· · ·
[
M1 2v1

01×3 1

][
C
BR

CpB
01×3 1

][
Bp
1

]
=

[
ANv bNv
01×3 1

] [
Bp
1

]
, (15)

where M`, ` = 1, . . . , Nv , denotes the Householder reflection
matrix corresponding to the vector v`:

M` =

(
I3 − 2

v`v
T
`

vT` v`

)
. (16)

Together, (15) and (1) describe the measurement model when
Nv mirrors are used to observe each point. A number of
interesting remarks can be made about the structure of these
equations. First, we see that the pair {ANv ,bNv} describes a
combined Euclidean/reflection transformation, which depends
on the camera-to-base transformation and the configuration
of all mirrors. Moreover, these quantities (which are the un-
knowns in the extrinsic calibration problem) affect the camera
observations only through the pair {ANv ,bNv}. This means
that computing this pair using the point observations in an

image provides us with all the information available in the
image for determining the unknowns.

The special significance of the pair {ANv ,bNv} warrants
further investigation of its properties. First, we note that
its components can be expressed recursively in terms of
{ANv−1,bNv−1}. Specifically, based on (15), we can write:

ANv = MNv · · ·M1
C

BR

= MNvANv−1 (17)
bNv = MNv · · ·M1

CpB + 2MNv · · ·M2v1 + · · ·
+ 2MNvMNv−1vNv−2 + 2MNvvNv−1 + 2vNv

= MNvbNv−1 + 2vNv . (18)

In fact, this recursive structure can also be extended to include
the camera-to-base transformation, by defining:

A0 = C

BR (19)
b0 = CpB. (20)

This fact will be useful in the presentation of our analytic
solution in Section IV.

The matrix ANv has additional useful properties. Specif-
ically, from (17) we observe that this matrix is the product
of Nv Householder reflection matrices, M`, ` = 1, . . . , Nv ,
and one rotation matrix, CBR. Both Householder and rotation
matrices are unitary matrices; however, Householder matrices
have determinant equal to -1, while rotation matrices’ deter-
minants equal +1. Using these properties, we can show that
ANv is always unitary, and when Nv is even, ANv is itself
a rotation matrix [i.e., det (ANv ) = +1], while when Nv is
odd, det (ANv ) = −1. The usefulness of these properties will
become evident in Section IV-A.

B. Relationship to PnP

At this point, it is interesting to examine the relationship
between the measurement model described above and the
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TABLE I
DEFINITION OF SYMBOLS

Nf number of fiducial points
Nr number of reconstruction points
Nc number of images
Nv number of mirrors
i index for points
j index for mirror configurations / images
k index for the MLE iteration
` index for mirrors
{C} camera frame
{B} base frame
C
BR camera-to-base rotation matrix
CpB camera-to-base translation vector
Cp point of interest in the camera frame
Cp′ reflection of p, observed by the camera

Cv`(j) mirror vector for the j-th configuration of mirror `
M`(j) reflection matrix corresponding to Cv`(j)

ANv effective rotation/reflection matrix in the Nv-mirror case
bNv effective translation vector in the Nv-mirror case
zij normalized image coordinates of point i observed in image j

measurement model associated with the “traditional” perspec-
tive n-point camera pose determination problem (PnP). The
goal of the latter is to determine the six-DOF transformation
{CBR, CpB} between the camera frame {C} and a base frame
{B}, based on observations of Nf fiducial points whose
base-frame coordinates, Bpi, i = 1, . . . , Nf , are known. The
observations of each of these points are described by the
following equations:

zi =
1

p3i

[
p1i

p2i

]
, Cp′i =

[
p1i p2i p3i

]T
(21)[

Cp′i
1

]
=

[
C
BR

CpB
01×3 1

] [
Bpi
1

]
. (22)

By comparison of the above two equations to (1) and (15), it
becomes clear that the structure of the two sets of equations
is similar. The difference is that in the PnP problem the un-
knowns are described by the transformation pair {CBR, CpB},
while in the mirror-based extrinsic calibration problem all
the unknowns are included in the pair {ANv ,bNv}, which
depends on {CBR, CpB}, as well as on the mirror vectors v`,
` = 1, . . . , Nv . Thus, the number of unknowns in the mirror-
based problem is higher. Despite this difference, the similarity
of the two problems allows us to build upon existing solutions
for the PnP problem, and utilize them in the analytic method
we propose in Section IV.

C. Problem statement and conditions for computing a solution

We now formally state the problem we solve in this paper.
Our goal is to determine (i) the six-DOF transformation,
{CBR, CpB}, between the camera frame {C} and the base
frame {B}, and (ii) the base-frame coordinates of Nr “recon-
struction points,” Bpi, i = 1, . . . , Nr. To accomplish these two
objectives, we use the observations in Nc images of the Nr
reconstruction points, as well as of Nf fiducial points, whose
coordinates are known in {B}. The observation of the ith point
in the jth image is denoted by zij , with i = 1, . . . , (Nf +Nr)
and j = 1, . . . , Nc. Each of these observations is the result of
reflection in Nv mirrors, and is described by the measurement

TABLE II
CONDITIONS FOR COMPUTING A SOLUTION WITH Nv = 1:

NUMBER OF IMAGES VS. NUMBER OF POINTS

Nc = 1, 2 Nc ≥ 3
Nf < 3 Not enough information to determine A and b
Nf = 3 Discrete solutions for

A1(j) and b1(j), infinite
solutions for CBR, CpB ,
and v1(j)

Discrete solutions for A1(j)
and b1(j), unique solution
for C

BR, CpB , and v1(j)
[Nc = 3: Minimal problem
with a unique solution]

Nf > 3 Unique solutions for
A1(j) and b1(j), infi-
nite solutions for C

BR,
CpB , and v1(j)

Unique solutions for A1(j) and
b1(j), unique solution for CBR,
CpB , and v1(j)

model presented in Section III-A. Since the configuration
of the mirrors is not known a priori, the mirror vectors
corresponding to each image, v`(j), with ` = 1, . . . , Nv and
j = 1, . . . , Nc, are additional unknowns in the problem. Note
that, in general, each of the mirrors may move to a new
location for each image. However, we will show that for a
unique solution to exist, some restrictions need to be imposed
on the motion of the mirrors. For easy reference, Table I
summarizes the notation used throughout the paper.

Our solution approach is to first compute an initial estimate
for all unknowns using an analytic algorithm (Sections IV
and V), and to subsequently refine the closed-form solution
using an MLE (Section VI). For both steps, the existence and
number of solutions is an important consideration. We now
examine what are the requirements on the number of fiducial
points, Nf , the number of images, Nc, and the motion of the
mirrors, to ensure that a unique solution can be computed.
In this section, we focus on the existence of solutions for
the first objective stated above (computing the camera-to-
base transformation), while the requirements for computing
a solution to the second objective are discussed in Section V.

As explained in Section III-A2, the pair {ANv ,bNv} fully
describes the reflection geometry for each image, and encap-
sulates all the relevant unknowns. Thus, computing this pair
for each of the available images is the first step to an analytic
solution. To examine the conditions under which a solution
for {ANv ,bNv} can be computed, we leverage the analogy
between our problem and PnP, discussed in Section III-B.
Specifically, due to the similarity of the problem structure,
the conditions under which the pair {ANv ,bNv} can be
determined in the mirror-based calibration problem are the
same as the conditions for computing the camera-to-base
transformation in the PnP. There exist three cases of interest:

• Nf < 3: When less than three fiducial points are available
in PnP, there is not enough information to determine the
transformation between the camera and the base frame.
This is because at least three points are needed to define
the transformation between two frames of reference: if,
for example, only two points are available, then any
rotation of the two frames about the line which passes
through the two points would not affect the measure-
ments. Analogously, when Nf < 3, the mirror-based
calibration problem cannot be solved.

• Nf = 3: When exactly three non-collinear fiducial points
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are available the problem at hand is analogous to a
P3P problem. In this case, we can employ existing P3P
algorithms to compute a discrete number of solutions for
the pair {ANv ,bNv} for each of the available images (see
Section III-B). Several approaches have been proposed
for the P3P since its first introduction [14], and it is well
known that there may exist up to four pairs of solutions
for the problem, where for each pair, one solution lies in
front of the center of perspectivity and one behind it [17].

• Nf > 3: When more than three non-collinear fiducial
points are visible, the problem is analogous to the PnP,
with n > 3. By analogy to the PnP, in this case we can
determine a unique solution for the pair {ANv ,bNv},
barring degenerate configurations [17].

Based on the above discussion, we see that when at least three
fiducial points are available (i.e., Nf ≥ 3), we can compute
one or more discrete solutions for {ANv(j),bNv(j)}, for j =
1, . . . , Nc. Our next task is to use these solutions in order
to determine the camera-to-base transformation, as well as all
the mirror vectors. In order to establish conditions under which
this is possible, in what follows we examine the number of
unknowns in the system, and compare it with the number of
available constraint equations.

Recall that, as shown in Section III-A2, ANv is a unitary
matrix, and consequently it only has three DOF. This means
that determining the pairs {ANv(j),bNv(j)} for j = 1, . . . , Nc
only provides 6 independent constraint equations per image
[3 from the unitary matrix ANv , and 3 from the vector bNv ,
see (17)-(20)]. Thus, from Nc images, we can obtain 6Nc
constraint equations. On the other hand, the six-DOF camera-
to-base transformation corresponds to 6 unknowns and, if Nv
mirrors are used, each of the mirrors introduces 3 unknowns
per image (the three elements of the vector v`(j)). Therefore, if
in each of the Nc images each mirror moves to a new location,
the total number of unknowns is equal to 3NvNc + 6. At this
point we distinguish two cases of interest:

1) Single-mirror-based calibration: When Nv = 1, then
the total number of unknowns is 3Nc + 6. Comparing this
number with 6Nc, the number of available constraints, we
identify four cases:
• Nc = 1: When one image is available, there are 6 con-

straint equations arising from the image measurements
with 9 unknowns (i.e., an underdetermined system), and
thus we cannot compute a discrete set of solutions.

• Nc = 2: When two images are available, there are 12
constraint equations with 12 unknowns (i.e., a square
system). However, we show in [38] that in this case
there exists an unobservable mode in the system, which
corresponds to rotations about the vector v1(1) × v1(2).
Thus, even though the number of unknowns equals the
number of available constraints, no discrete solutions can
be computed.2

• Nc = 3: When three images are available, the nonlinear
system is overdetermined with 15 unknowns and 18
constraints. If the mirror vectors v1(j), j = 1, 2, 3 are

2Sturm and Bonfort [35] also report this case, providing an alternative
algebraic proof for the unobservable direction.

linearly independent, a unique solution for CBR, CpB, and
v1(j), j = 1, 2, 3, can be computed, by application of the
algorithm presented in Section IV.

• Nc ≥ 3: Finally, if more than three images are available,
we can also compute a unique solution provided that at
least three mirror vectors are linearly independent.

From the above discussion we conclude that in the single-
mirror case the minimal problem, for which a unique solution
can be computed, is one with Nf = 3 and Nc = 3,
under the constraint that the three mirror vectors are linearly
independent. For easy reference, Table II summarizes the
results for the single-mirror case

2) Multiple-mirror-based calibration: When Nv > 1 and
each mirror moves to a new location for each image, then
the number of unknowns, 3NvNc + 6, is always larger than
the number of constraints available, 6Nv . Therefore, unless
some restrictions are imposed on the motion of the mirrors,
no discrete set of solutions can be computed. We propose
to move the mirrors in a specific order that reduces the
number of unknowns and allows for computing a unique
solution. Denoting the j-th configuration of mirror ` as v`(j),
our strategy requires that for each configuration of the first
` mirrors (v1(j) to v`(j)), the (`+ 1)-th mirror is moved
to at least three different configurations (v`+1(j), v`+1(j′),
v`+1(j′′)) with an image recorded in each of them.

This approach is illustrated in Fig. 4 for the simple case of
two mirrors. Each “leaf node” in the ternary tree corresponds
to one image, and tracing the path from the leaf node to the
root of the tree specifies the mirror configurations for that
image. The index j also corresponds to the image number
at the leaf nodes, since there is one image recorded per
configuration of mirror Nv . We employ this fact to simplify
the notation, and we index both the mirror configurations and
the images with j.

In the two-mirror case, the total number of mirror-1 configu-
rations is three, and the total number of mirror-2 configurations
is nine. In the general case of Nv mirrors, this strategy
results in 3Nv images with 6 × 3Nv constraints, and hence
6 + 3(3 + 32 + . . .+ 3Nv ) = 6 + 9

2 (3Nv − 1) unknowns. Since
6× 3Nv > 6 + 9

2 (3Nv − 1), the resulting problem is an over-
determined one, and a unique solution can be computed, as
shown in the next section. The sequence of mirror motions
described above is motivated by the recursive structure of
the measurement equations, described in Section III-A. Using
this strategy, it is possible to first determine all the mirror
vectors for mirror Nv , then for mirror Nv−1, and to continue
recursively until the camera-to-base transformation is found.

IV. ANALYTIC SOLUTION FOR THE CAMERA-TO-BASE
TRANSFORMATION

In this section, we present the analytic solution to the mirror-
based extrinsic calibration problem. The main steps of the
proposed approach are:
• In the first step, we compute the pair {ANv(j),bNv(j)},

for each image j = 1, . . . , Nc (Section IV-A).
• In the second step, the solutions obtained above are

used to compute the mirror vectors for the Nv-th mirror,
vNv(j), j = 1, . . . , Nc (Section IV-B).
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Fig. 4. The mirror configurations for the two-mirror case are depicted as a
full ternary tree.

Algorithm 1 Extrinsic Calibration and 3D Reconstruction
Input: Observations of Nf fiducial (known) points and Nr

reconstruction (unknown) points tracked in Nc images
Output: Camera-to-base transformation {CBR, CpB} and 3D

base-frame coordinates of reconstruction points Bpi, i =
1, . . . , Nr
for each image j = 1, . . . , Nc do

If Nv is odd, convert to Nf -point pose estimation prob-
lem (23)
Solve PnP to obtain {ANv(j),bNv(j)} (24)

end for
for each mirror ` = 1, . . . , Nv do

Compute mirror configurations from (27)-(30)
Eliminate `-th mirror from the problem (31)-(32)

end for
Compute camera-to-base rotation C

BR from (19)
Compute camera-to-base translation CpB from (20)
for each reconstruction point Bpi, i = 1, . . . , Nr do

Compute 3D position using the observations from all
images (35)

end for
Refine the solution using the maximum-likelihood estimator
(see Section VI)

• Given the pairs {ANv(j),bNv(j)} and the vectors
vNv(j), j = 1, . . . , Nc, we compute the pairs
{ANv−1(j),bNv−1(j)}, and use them to solve for all the
vNv−1(j), j = 1, . . . , Nc3 mirror vectors. This process is
repeated recursively for ` = Nv − 1, Nv − 2, . . . , 0, to
compute the configurations of all the mirrors and finally,
the camera-to-base transformation (Section IV-C).

Once these steps are complete, we proceed to compute
a solution analytically for the position of the reconstruction
points, as described in Section V. For reference, the steps of
the solution process are described in Algorithm 1.

A. Solving for {ANv(j),bNv(j)}
As explained in Section III-B, the mathematical formulation

of the mirror-based calibration problem is similar to the
formulation of the PnP problem, with the key difference being
that in the mirror-based problem the pair {ANv(j),bNv(j)}
replaces the pair {CBR, CpB} in the measurement equations.

We now show that this similarity can be leveraged in order to
compute {ANv(j),bNv(j)} for each image j. Specifically, we
take advantage of the fact that, as discussed in Section III-A2,
when Nv is even ANv(j) is a rotation matrix. Therefore,
for Nv even, the pair {ANv(j),bNv(j)} is “equivalent” to
a Euclidean transformation, described by a rotation matrix
ANv(j) and a translation vector bNv(j). In turn, this means
that we can directly apply any PnP solution method to obtain
ANv(j) and bNv(j). In the experiments presented in this paper,
Nf = 3, and we solve the corresponding P3P problem using
the solution presented by Fischler and Bolles [16].

The situation is slightly different when Nv is odd, since in
this case ANv(j) is no longer a rotation matrix (it is unitary
but its determinant is −1), and we cannot directly apply a
PnP solution. Although it is possible to formulate and solve
a modified PnP problem for this case, there is a simpler
method which allows us to use existing PnP algorithms. In
particular, we transform the problem to convert ANv(j) into a
rotation matrix, by applying an additional known reflection to
the measurements. In our implementation, we accomplish this
by negating all of the y-coordinates of the observed points,
which corresponds to reflecting all the points across the xz-
plane of the camera frame. Thus, the measurement equation
in this case becomes zij = h(C̆pij) + η, where[
C̆pij

1

]
=

[(
I3 − 2e2e

T
2

)
03×1

01×3 1

] [
Cp′

ij

1

]
=

[(
I3 − 2e2e

T
2

)
03×1

01×3 1

] [
ANv(j) bNv(j)

01×3 1

] [
Bpi
1

]
=

[
C̆
BR(j)

C̆pB(j)

01×3 1

] [
Bpi
1

]
, (23)

where e2 =
[
0 1 0

]T
. Note that the matrix C̆

BR(j) is a
rotation matrix, not a reflection. Thus, after negating the y-
coordinates of all the points in the image, we can solve the
PnP to obtain solution(s) for the unknown transformation
{C̆BR(j),

C̆pB(j)}. Subsequently, given the PnP solution, we
recover ANv(j) and bNv(j) through the following relationship
which follows directly from (23)[
ANv(j) bNv(j)

01×3 1

]
=

[(
I3 − 2e2e

T
2

)
03×1

01×3 1

][
C̆
BR(j)

C̆pB(j)

01×3 1

]
(24)

for j = 1, . . . , Nc.

B. Determining the configuration of the Nv-th mirror

Once the pair {ANv(j),bNv(j)}, has been determined for
all images (j = 1, . . . , Nc), we then employ these matrices
in order to compute the vectors of mirror Nv , vNv(j). For
simplicity, we first present the solution for the minimal case,
in which exactly three images (Nc = 3) are taken for each
configuration of mirrors 1 through Nv−1, and we momentarily
ignore the possibility of multiple PnP solutions for the pair
{ANv(j),bNv(j)}. These issues are discussed at the end of
this subsection. To demonstrate the procedure, we focus on the
first three images recorded by the camera. Let us assume that
for these images the Nv-th mirror is moved to three different
locations, described by the vectors vNv(j), j = 1, 2, 3, while
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all the other mirrors in the system remain in place (as in the
situation depicted in Fig. 4). In this case, we can write the
equations [see (17)]:

ANv(j) = MNv(j)ANv−1(1), j = 1, 2, 3. (25)

Let us now consider the unit vector rjj′ that is perpendicular
to both vNv(j) and vNv(j′) (j, j′ ∈ {1, 2, 3}, j 6= j′). This
vector satisfies vTNv(j)rjj′ = vTNv(j′)rjj′ = 0, and using these
properties, we can show that [see (25) and (16)]:

ANv(j)A
T
Nv(j′)rjj′ = MNv(j)ANv−1(1)

×AT
Nv−1(1)M

T
Nv(j′)rjj′

= MNv(j)M
T
Nv(j′)rjj′

= rjj′ , (26)

where we also used the fact that ANv−1(1) is unitary,
ANv−1(1)A

T
Nv−1(1) = I3. Equation (26) states that the unit

vector rjj′ is the eigenvector of ANv(j)A
T
Nv(j′) corresponding

to the unit eigenvalue. Since the matrices ANv(j), j = 1, 2, 3
have already been computed using the PnP in the previous
step, we are able to determine the vectors rjj′ up to sign,
via eigen-decomposition of ANv(j)A

T
Nv(j′). Once this step is

complete, we can determine the vectors vNv(j), j = 1, 2, 3 up
to scale via the following relationships:

vNv(1) = cNv(1) r13×r12 (27)
vNv(2) = cNv(2) r21×r23 (28)
vNv(3) = cNv(3) r13×r23, (29)

where cNv(j), j = 1, 2, 3, are unknown scalars that can be
determined using (18). Specifically, by substituting the above
three equations in (18) for each of the first three images, we
formulate the following overdetermined linear system:

MNv(1) 2 r13×r12 03×1 03×1

MNv(2) 03×1 2 r21×r23 03×1

MNv(3) 03×1 03×1 2 r13×r23



bNv−1(1)

cNv(1)

cNv(2)

cNv(3)

=

bNv(1)

bNv(2)

bNv(3)

 .
(30)

Solving this linear system provides a unique solution for the
vector [bTNv−1(1) cNv(1) cNv(2) cNv(3)]

T , which in turn,
allows us to compute vNv(j), j = 1, 2, 3, using (27)-(29). In
the above system, the vectors bNv(j) appearing on the right-
hand side are available from the PnP solution for the pairs
{ANv(j),bNv(j)}, j = 1, 2, 3, the vectors rjj′ are computed
by the eigen-decomposition of the matrices ANv(j)A

T
Nv(j′),

and finally, the matrices MNv(j) are computed using the vec-
tors in (27)-(29). Note that the definition of the Householder
matrix M` in (16) is invariant to the length or sign of the
vector v`, thus the matrices appearing on the left-hand side
in the above equation can be evaluated even before the scale
factors cNv(j) are known.

1) Dealing with multiple solutions: Up to this point, we
have assumed that each of the PnP solutions was unique, in
order to simplify the presentation of the analytic solution.
However, in the general case multiple PnP solutions may
exist (e.g., up to 4 admissible ones when Nf = 3). In that
case, we compute an analytic solution by following the above
procedure for each of the PnP solutions for each of the images,

and select the solution which yields the minimum residual
in (30). For instance, if four solutions exist for each of the pairs
{ANv(j),bNv(j)}, j = 1, 2, 3, then we will apply the above
procedure 4× 4× 4 = 64 times, and keep the best solution. If
the measurements were noise-free, we would expect only one
solution to have zero error, since the nonlinear system we are
solving is over-constrained. In practice, when noise is present,
we have found that choosing the solution with the minimum
error is a suitable way of rejecting the invalid solutions.

2) Dealing with multiple images: In our mirror-motion
strategy, we require that mirror Nv is moved to at least three
locations for each configuration of mirrors 1 through Nv − 1.
However, to increase the accuracy of the estimates, we may
choose to record more than three images. This corresponds
to a measurement tree (see Fig. 4) with a branching factor
larger than three. In this case, we select triplets of images to
analytically compute the mirror vectors for all of the Nv-th
mirror locations. Amongst all triplets we select the one that
yields the minimum residual in (30) to use in the recursive
process described in the following section.

C. Solving for the remaining mirror vectors, and the camera-
to-base transformation

Following the procedure described in the previous section,
we can determine the mirror vectors vNv(j) for the last mirror
in all the Nc images. Once this process is complete, we can
eliminate all the variables related to mirror Nv , i.e., the vectors
vNv(j), j = 1, . . . , Nc. This is accomplished by the following
equations, which result from (17) and (18):

ANv−1(j′) = M−1
Nv(j)ANv(j) (31)

bNv−1(j′) = M−1
Nv(j)

(
bNv(j) − 2vNv(j)

)
, (32)

for j = 1, . . . , 3Nv = Nc, j′ = dj/3e (where d·e de-
notes the round-up operation). Note that since at least three
different images (three different values of j) correspond to
the same index j′, we obtain three estimates of the pair
{ANv−1(j′)bNv−1(j′)}. Due to the presence of noise, these
estimates will generally be slightly different. From these esti-
mates we compute a single, “average” estimate for ANv−1(j′)

and bNv−1(j′), using the least-squares method presented in [2],
which accounts for the fact that ANv−1(j′) is a unitary matrix.

Once the above procedure is complete, we have effectively
converted the original Nv-mirror problem into an instance of
an (Nv−1)-mirror problem. Hence, we can follow the process
outlined in Section IV-B to compute all the mirror vectors
for mirror Nv − 1. Subsequently, we can eliminate all the
variables associated with mirror Nv−1, and create an instance
of a (Nv − 2)-mirror problem. Proceeding recursively in this
manner, we can compute all the mirror vectors in the system.
Most importantly, this recursive process also provides us with
the camera-to-base transformation, {CBR, CpB}, which is the
main goal of the calibration process [see (19) and (20)].

V. ANALYTIC SOLUTION FOR ROBOT-BODY
RECONSTRUCTION

In the previous section, we described how to analytically
determine the camera-to-base transformation and the mirror
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configurations using the observations of the fiducial points.
We now turn our attention to computing the 3D base-frame
coordinates of the reconstruction points, whose positions are
not known a priori. We present an analytic method for this
problem, which employs the solution for the camera-to-base
transformation and the mirror configurations computed in the
previous step.

Consider a single reconstruction point, Bpi, observed via
reflection through Nv mirrors in Nc images. If we denote the
measured unit-vector direction towards the reflected point as

Cp̂′ij =
1√

1 + zTijzij

[
zij
1

]
, (33)

then we can write the expression:

sij
Cp̂′ij = ANv(j)

Bpi + bNv(j), j = 1, . . . , Nc, (34)

where the scalar sij is the unknown distance to the reflected
point in image j. The measurement model in (34) is equivalent
to the perspective projection model defined in Section III-A,
but has the property that it is linear in the unknowns sij and
Bpi. When Bpi is observed in at least two images (i.e., Nc ≥
2), we can form an overdetermined set of linear equations:

ANv(1) −Cp̂i1 . . . 03×1

ANv(2) 03×1 . . . 03×1

...
. . .

...
ANv(Nc) 03×1 . . . −Cp̂iNc



Bpi
si1
...

siNc

=


−bNv(1)

−bNv(2)

...
−bNv(Nc)

.
The matrices ANv(j) and bNv(j), j = 1, . . . , Nc, appearing
above are available from the analytic solution presented in
Section IV, while the vectors Cp̂ij are computed using the
image measurements, as shown in (33). Thus the only un-
knowns in the system are the scale factors sij and the feature
position, Bpi. This system has 3Nc linear equations in Nc+3
unknowns, and by solving it we obtain the point’s coordinates
in the base frame.

It is interesting to note that the above presented solution
only requires knowledge of the pair {ANv(j),bNv(j)} for each
of the images, but not necessarily knowledge of the camera-
to-base transformation or of the mirror vectors. Therefore,
there are fewer requirements for computing the 3D position
of the reconstruction points than for determining the camera
pose in the base frame. Specifically, if at least two images
are available, for which the pair {ANv(j),bNv(j)} can be
computed (i.e., at least two images with Nf ≥ 3), a solution
for the reconstruction points’ coordinates can be found. This
is the case regardless of the number of mirrors, an observation
which may have useful practical implications.

VI. MLE REFINEMENT OF ANALYTIC SOLUTIONS

In the preceding sections, we showed how to compute the
analytic solutions for the camera-to-base transformation, the
mirror configurations, and the reconstruction points. However,
the accuracy of these solutions may not be the best possible,
due to the fact that the statistical properties of the noise have
not been properly accounted for. For this reason, we refine the
analytic solution with an MLE for all the unknowns.

Let the vector of all unknown parameters be denoted
by x. This vector comprises the unknown transformation
{CBR, CpB}, the vectors v`(j), ` = 1, . . . , Nv , j = 1, . . . , 3`,
that describe the mirror configurations, and the 3D base-frame
coordinates of the reconstruction points, Bpi, i = 1, . . . , Nr.
In our implementation, we adopt the unit-quaternion represen-
tation of rotation [39], and thus x is

x =
[
CpTB

C q̄TB
CvT1(1) . . .

CvTNv(3Nv )
BpT1 . . . BpTNr

]T
,

(35)

where C q̄B is the unit quaternion representation of the rotation
between frames {B} and {C}. We use Z to denote the
set of all available measurements, and the likelihood of the
measurements is given by

L(Z;x) =

Nf+Nr∏
i=1

Nc∏
j=1

p(zij ;x)

=

Nf+Nr∏
i=1

Nc∏
j=1

1

2πσ2
η

exp
[
− (zij−h(Cp′ij))

T
(zij−h(Cp′ij))

2σ2
η

]

=

Nf+Nr∏
i=1

Nc∏
j=1

1

2πσ2
η

exp
[
− (zij−hij(x))T (zij−hij(x))

2σ2
η

]
,

(36)

where h
(
Cp′ij

)
is the measurement function defined in (1),

and the dependence of the measurements on x is explicitly
shown. Maximizing the likelihood is equivalent to maximizing
its logarithm, which in turn is equivalent to minimizing the
following cost function:

J(x) =
∑
i,j

(zij − hij(x))T (zij − hij(x)). (37)

The minimization of this cost function is a nonlinear
least-squares problem, and thus we employ the Levenberg-
Marquardt (LM) iterative minimization algorithm for estimat-
ing the parameter vector x [10]. During iteration k of the
algorithm, the estimate is changed by δx(k), where∑

i,j

H
(k)T
ij H

(k)
ij + λI6+3Nc+3Nr

 δx(k) =

∑
i,j

H
(k)T
ij

(
zij − hij(x

(k))
) , (38)

where λ is the LM damping coefficient, and H
(k)
ij is the

Jacobian of the measurement function hij (x) with respect to
x, evaluated at the current iterate, x(k). The structure of this
matrix in the Nv-mirror case is shown in Appendix A. It is
important to note that because the structure of H(k)

ij is sparse,
the above system is also sparse. Thus, δx(k) can be evaluated
very efficiently.

The parameter correction, δx(k), has the following structure:

δx(k) =
[
δCp

(k)T
B δθ(k)T δCv

(k)T
1(1) . . . δCv

(k)T

Nv(3Nv )
,

δBp
(k)T
1 . . . δBp

(k)T
Nr

]T
, (39)
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where all vectors on the right-hand side are 3 × 1 error
vectors. With this notation, the updates for the iterates of the
parameters CpB, C q̄B, Cv`(j), and Bpi are written as:

Cp
(k+1)
B = Cp

(k)
B + δCp

(k)
B (40)

C q̄
(k+1)
B = δq̄(k) ⊗ C q̄

(k)
B , δq̄(k) =

[
1
2δθ

(k)√
1− 1

4δθ
(k)T δθ(k)

]
(41)

Cv
(k+1)
`(j) = Cv

(k)
`(j) + δCv

(k)
`(j), ` = 1, . . . , Nv, (42)

Bp
(k+1)
i = Bp

(k)
i + δBp

(k)
i , i = 1, . . . , Nr, (43)

where ⊗ denotes quaternion multiplication (for more details
on the quaternion convention, please refer to [39]).

Once the LM iterates converge (determined by a threshold
on the norm of δx(k)), the covariance of the resulting param-
eter estimates is computed with the expression

P = σ2
η

∑
i,j

H
(k)T
ij H

(k)
ij

−1

. (44)

VII. SIMULATIONS

We hereafter present simulation results for evaluating the
performance of the proposed single- and multi-mirror ap-
proaches when computing the camera-to-base transformation
and the 3D base-frame coordinates of the reconstruction
points.

A. Single mirror: analytic solution and MLE accuracy

We first examine the accuracy of the analytically computed
camera-to-base transformation (see Section IV) and recon-
struction points (see Section V), as well as the uncertainty
in the MLE estimates (see Section VI) in the single-mirror
case. In particular, we investigate how the estimation perfor-
mance is affected by the following parameters: (i) pixel noise,
(ii) camera-to-mirror distance, and (iii) range of the mirror’s
angular motion. We consider a base case, in which three
fiducial points and a single reconstruction point, placed at the
corners of a square with sides measuring 20 cm, are observed
in three images. The points are seen via their reflections in a
planar mirror, which is placed at a distance of 0.3 m from the
camera and rotated by 25◦ in two directions. We vary each of
the aforementioned parameters individually to examine their
effects on the solution accuracy.

In Fig. 5, we plot the position and attitude accuracy of
the analytic camera-to-base transformation and the analytically
computed 3D base-frame coordinates of the reconstruction
point, along with the accuracy of the MLE estimates. Specif-
ically, to evaluate the analytic solution’s accuracy we depict
the RMS error for the least accurate axis, averaged over 100
Monte Carlo runs. The MLE accuracy is shown by the standard
deviation (1σ) for the least certain axis, computed from the
covariance estimate [see (44)]. Some key observations based
on the results shown in Fig. 5 are the following:
• Increasing the camera’s pixel noise decreases the accu-

racy of the computed solution and the MLE estimates

[see Fig. 5(a)]. When the camera measurements become
substantially noisy, e.g., σ = 2 pixels, the average RMS
error of the analytic solution is 5 cm in position and
6.4◦ in attitude. After refinement the 1σ uncertainty
bound from the MLE is 1.2 cm in position and 1.1◦

is attitude. At this noise level, the analytic error and
MLE 1σ bound for the reconstruction point are 1.3 cm
and 4.7 mm, respectively. Using such trade-off curves, a
suitable sensor can be selected based on the calibration
accuracy required for a specific task.

• Changing the distance from the mirror to the camera has
a significant effect on the accuracy of the estimate of
the camera position with respect to the base frame [see
Fig. 5(b)]. In the extreme case, when the mirror is at a
distance of 1.5 m, the average RMS error for the analytic
solution for position is approximately 7.5 cm and drops
to 4.5 cm after application of the MLE. The magnitude
of this error suggests that the mirror distance should be
kept small. Additionally, it highlights the need to refine
our analytically-computed transformation with an MLE.

• Increasing the range of the mirror’s angular motion results
in improved accuracy both for the analytic solution and
the MLE estimates [see Fig. 5(c)]. The effect is significant
and every effort should be made to move the mirror in
the widest range of directions allowed by the camera’s
field of view.

B. Two mirrors: analytic solution and MLE accuracy

We next examine the two-mirror case. As in the previous
section, we evaluate the accuracy of the analytically-computed
camera-to-base transformation (see Section IV), and of the
reconstruction point’s 3D base-frame coordinates (see Sec-
tion V), as well as the uncertainty in the MLE estimates (see
Section VI). The base case we employ is identical to the single
mirror case, with the addition of a second mirror behind the
camera, at a distance equal that of the camera from the first
mirror. The three fiducial points and the single reconstruction
point are viewed via their double reflections, in mirrors 1 and 2
(see Fig. 3).

In Fig. 6, we plot the position and attitude accuracy of the
analytic solution for the camera-to-base transformation and the
accuracy of the reconstruction point, along with the accuracy
of the MLE estimates. The performance trends follow the
single-mirror scenario, in particular:
• As the pixel noise increases, the accuracy of the analytic

solution, as well as of the MLE decreases [see Fig. 6(a)].
As expected, the use of two mirrors introduces additional
unknowns compared to the single mirror case, and this
degrades the accuracy of the camera-to-base transforma-
tion estimation. However, it is interesting to observe that
this is not the case for the reconstruction point. This is
due to the fact that, as discussed in Section V, computing
the 3D point’s coordinates does not require knowledge of
the camera-to-base transformation or the mirror vectors.

• As the distance between the camera and the mirrors
increases, the accuracy also decreases [see Fig. 6(b)].
We note that the effect is more pronounced than in the
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Fig. 5. Single mirror: analytic solution and MLE accuracy for the camera-to-base transformation and reconstruction point plotted versus: (a) pixel noise,
(b) mirror distance, and (c) range of mirror rotation. The analytic solution’s accuracy is computed as the average RMS error over 100 trials, while the MLE
accuracy is plotted as the standard deviation computed from the estimated covariance.
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Fig. 6. Two mirrors: analytic solution and MLE accuracy for the camera-to-base transformation and reconstruction point plotted versus: (a) pixel noise,
(b) mirror distance, and (c) range of mirror rotation. The analytic solution’s accuracy is computed as the average RMS error over 100 trials, while the MLE
accuracy is plotted as the standard deviation computed from the estimated covariance.

single-mirror case since in the two-mirror simulation both
mirrors are moving farther away from the camera, and the
effective depth to the points is twice as large.

• Increasing the range of the mirrors’ angular motions
improves the overall system performance [see Fig. 6(c)].
In the two-mirror case, the effective baseline created by
moving the mirrors is larger than in the single-mirror
scenario, and the performance improves more rapidly
with the increase in the mirror-rotation range.

Note that, for both the single- and multi-mirror cases, using
the analytic solution as an initial guess for the MLE enables the
latter to converge to the correct minimum 100% of the time for
non-singular measurement configurations. On average, fewer
iterations were required (approx. 4) when compared to using
a naı̈ve initial guess (approx. 18). This shows that a precise
analytic solution improves the speed and robustness of the
overall estimation process.

C. Analysis of Additional Parameters

There are several additional parameters which affect the
solution accuracy: (i) number of mirrors in the system, (ii)
number of images recorded, and (iii) number of reconstruction
points (see Fig. 7).

• Using the same base case as in Sections VII-A and VII-B,
we examine the effect of adding a third mirror in the
system. Figure 7(a) depicts the results which demonstrate
that as the number of mirrors increases, the solution
accuracy decreases. This is primarily due to the dramatic
increase in effective depth to the robot body with each
additional mirror (it typically doubles with each mirror).
Moreover, we note that for a large number of mirrors
(four or more), it becomes difficult to even generate
realistic scenarios in which the reflected points fall within
the camera’s field of view. Hence, while these instances
provide validation of the method, and additional intuition
for the problem, they may be of little practical impor-
tance.

• Increasing the number of images3 results in higher accu-
racy for the MLE, as shown in Fig. 7(b). However, the
improvement follows a “law of diminishing returns,” i.e.,
when a large number of images is already available, the
impact of recording more measurements is small.

• The final parameter which we study is the number of
reconstruction points. Figure 7(c) depicts the MLE 1σ

3Since the analytic solution does not benefit from additional images (i.e.,
we solve the base case, and we do not exploit additional measurements at the
analytic level), we have not plotted the analytic RMS values on this graph.
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Fig. 7. Effect of additional system parameters on the accuracy of the camera-to-base transformation and the reconstruction point: (a) number of mirrors,
(b) number of images, and (c) number of reconstruction points.

bound for the camera-to-base transformation and the least
accurately estimated reconstruction point when using 3
to 100 reconstruction points4. It is quite interesting to
note that as more reconstruction points become available,
the camera-to-base transformation becomes increasingly
more accurate. This is due to the fact that the observations
of unknown points provide us with information about the
motion of the camera between images (analogous to the
epipolar geometry).

VIII. EXPERIMENTS

The proposed methods were also evaluated in real-world
experiments to assess their performance and effectiveness in
practice. We first present results for performing single-mirror
camera-to-base calibration and 3D robot-body reconstruction
(see Section VIII-A). Subsequently, we show the results for
extrinsic calibration with two mirrors (see Section VIII-B).

A. Single mirror: camera-to-base transformation and 3D re-
construction

The methods described in Sections IV, V, and VI were
employed for computing the transformation between a camera
and the body frame of the robot on which it is attached, and
for determining the point-cloud representation of the robot-
body (i.e., the 3D coordinates of the reconstruction points).
Specifically, the camera-to-base transformation is computed
from observations of three fiducial points, placed in known
positions on the robot as shown in Fig. 8(a). The origin of {B}
coincides with the top-left fiducial point; both {B} and {C}
are right-handed systems with the axes of {B} approximately
aligned with those of {C}. These points were tracked using
the Kanade-Lucas-Tomasi (KLT) feature tracker [43] in 1000
images, recorded by a Firewire camera with resolution of
1024× 768 pixels.

A planar mirror was maneuvered in different spatial
configurations (rotating about two axes), and at distances
varying between 30 and 50 cm from the camera, in or-
der to generate a wide range of views. All the mea-
surements were processed to compute the transformation

4Since the number of reconstruction points does not affect the accuracy of
the analytical solution, we omit the analytic RMS values from the plot.

analytically: CpB =
[
−14.13 −10.25 −13.89

]T
cm,

and C q̄B =
[
−0.0401 −0.0017 −0.0145 0.9991

]T
.

This initial solution was refined using the MLE de-
scribed in Section VI, to obtain a better estimate for the
transformation between the two frames of interest. The
Levenberg-Marquardt iterative minimization with pseudo-
Huber robust cost function [10] converged after 10 iter-
ations, to the following solution for the transformation:
CpB =

[
−11.88 −13.81 −8.72

]T
cm, and C q̄B =[

0.0063 0.0298 0.0009 0.9995
]T

. The corresponding 3σ
uncertainty bounds are

[
1.516 1.762 8.862

]
mm for the

position, and
[
0.1176 0.2782 0.0483

]
deg for the orien-

tation estimates. We point out that the estimates agree with
our best guess from manual measurement. We believe that the
attained accuracy (given by the 3σ bounds from the MLE) is
sufficiently high for most practical applications. However, if
higher accuracy is required this can be achieved by increasing
the number of images and points, as well as decreasing the
distance between the camera and mirror (see Fig. 5).

In addition to computing the camera-to-base transformation,
we computed a 3D point cloud representation of the front of
the robot chassis (i.e., the 3D coordinates of the reconstruction
points). To this end, approximately 1000 SIFT features were
matched between two views and utilized as reconstruction
points [44]. After analytically computing the 3D coordinates
of each point, we employed the MLE (Section VI) to estimate
their base-frame coordinates. Figures 8(a) and 8(b) depict the
robot from an angled view, along with the 3D point cloud
representation of the robot chassis.

In the single-mirror approach, the reconstruction points
only cover the front of the robot body due to limitations
in the camera’s field of view. In order to capture the whole
chassis, we augmented our point-wise reconstruction with a
dense (per pixel) reconstruction method using a hand-held
camera [42] [see Fig. 8(c)]. The hand-held camera does not
have limitations in placement, hence the entire robot chassis
can be reconstructed with respect to it, up to scale. Using the
locations of the fiducial points in the previous (calibration-
based) 3D reconstruction expressed in the base frame, we
obtain the scale, and location of each point on the chassis
with respect to the robot’s camera. Precise knowledge of the
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(a) (b) (c)

Fig. 8. Single-mirror experiment: (a) A view of the robot from the side. (b) The estimated 3D point cloud of reconstruction points seen from a similar angle.
(c) A dense reconstruction obtained using Arc3D [42]. A layer of talc powder was applied in order to increase the texture on the robot body. Using talc is
reasonable since it does not change the geometry of the chassis and it can be easily wiped off after the experiment.

(a)

(b)

Fig. 9. Two-mirror experiment: (a) Image recorded during experimentation.
Two reflections of the robot are visible which provide different viewpoints
of the chassis. (b) The same image with the single mirror and two-mirror
reflections highlighted in blue and purple, respectively (see Fig. 1). The
fiducial points are only visible through the two-mirror reflection.

robot’s chassis in the camera frame can be used to increase
the robustness and efficiency of obstacle-avoidance algorithms
when navigating through tight spaces.

B. Two mirrors: camera-to-base transformation

We also evaluated the proposed method in a two-mirror
scenario with a camera-equipped mobile robot to compute the
transformation between the camera frame of reference and the

robot-body frame (see Fig. 1). Frame {B} is right-handed with
its x-axis pointing towards the front of the robot and its z-
axis pointing upwards. The rear-right fiducial marker coincides
with the origin of {B}, while the other two markers lie on its
x- and y-axis, respectively. Due to the relative placement of
the camera and the fiducials, they cannot be observed directly
by the camera nor can they be seen in the reflection in the
front mirror [see Figs. 9(a) and 9(b)]. Instead, the markers
were only visible via their double reflections, first in the rear
mirror, then in the front mirror.

As in the single-mirror experiment, the camera was con-
nected to the robot’s on-board computer via Firewire, and
recorded 900 gray-scale images at 10 Hz with resolu-
tion 1024 × 768 pixels. During the experiment the mark-
ers were tracked using KLT [43]. The front mirror was
moved continuously through the image sequence, while the
rear mirror was moved in three configurations (300 im-
ages per configuration). We computed the analytic solu-
tion for both mirror vectors in every image, as well as
the transformation between the camera-to-base translation,
CpB =

[
11.26 −4.48 −52.48

]T
cm, and orientation,

CqB =
[
−0.5005 0.5063 −0.4931 0.4998

]T
.

We initialized the MLE with the analytically computed
quantities, and the Levenberg-Marquardt minimization con-
verged after three iterations. The final estimates for translation
and orientation were CpB =

[
10.54 −4.42 −53.01

]T
cm,

and CqB =
[
−0.5026 0.5040 −0.4931 0.5000

]T
, re-

spectively. The corresponding 3σ bounds computed from
the diagonal components of the MLE estimated co-
variance were

[
9.75 6.92 6.44

]
mm in position and[

0.445 0.684 0.356
]

deg in orientation. The obtained ac-
curacy is suitable for use in many real-world applications,
however, we note that the accuracy decreases as the number
of mirrors increases. This also agrees with the observations
from our simulation trials (see Figs. 5 and 6).

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the problem of concurrently
estimating the camera-to-base frame transformation and per-
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forming 3D robot-body reconstruction, using observations of
points that lie outside the camera’s natural field of view. To
extend the camera’s visual coverage, we employ a sequence
of mirrors to observe the points via reflections. We require
that at least three of the features (fiducial points) be known in
the base frame in advance, while all the remaining features’
positions are estimated (reconstruction points). We do not
exploit any prior knowledge about the mirrors’ motions or
placements with respect to the camera, but instead, we treat the
mirror poses as unknown parameters to be determined along
with the camera-to-base transformation and the reconstruction
points’ coordinates. Using the geometry of the camera-mirror
observations, we formulate this problem as a system of non-
linear equations which we solve analytically, using PnP as an
intermediate step. Subsequently, we present an MLE which
allows us to compute high-accuracy estimates of all system
parameters, by properly accounting for the measurement noise
statistics.

We plan to extend this method to the case where no fiducial
points are available (i.e., none of the points’ coordinates
are known a priori), but all points’ positions are estimated
with respect to the camera frame, along with the mirror
configurations. In this case, the scale is unobservable, and
thus the distance between at least two of the points should
be measured manually.

APPENDIX A

The Jacobian of the measurement function zij (point i
measured in image j) with respect to the parameter vector
x is given by:

Hij = Hcij

[
Hpij Hqij . . . Hvij . . . HBpi . . .

]
,

(45)

where Hcij is the Jacobian of the perspective projection model
with respect to Cp′ij :

Hcij =
1

p3

[
1 0 −p1p3
0 1 −p2p3

]
(46)

and Hpij , Hqij , Hvij , and HBpi , are the Jacobians of Cp′ij
with respect to the camera position, camera rotation, the mirror
vector vij , and the feature position, respectively:

Hpij = ANv(j)
C

BR
T (47)

Hqij = ANv(j)bBpi×cCBRT (48)

Hvij = 2ANv(j)A
−1
`(j)

((
1−

vT`(j)g`−1(j)

vT`(j)v`(j)

)
I3 −

v`(j)g
T
`−1(j)

vT`(j)v`(j)

+ 2v`(j)v
T
`(j)

vT`(j)g`−1(j)(
vT`(j)v`(j)

)2

 (49)

HBpi = ANv(j) (50)

where g`−1(j) = A`−1(j)
Bpi + b`−1(j). If a fiducial (known)

point is measured, then HBpi does not appear in the corre-
sponding measurement Jacobian, since the coordinates of the
point are not in the parameter vector.
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rückawärtseinschneidens im raume,” Allgemeine Vermessungs-
Nachrichten, 1925.

[19] R. Horaud, B. Conio, O. Leboulleux, and B. Lacolle, “An analytic
solution for the perspective 4-point problem,” in Proc. of the IEEE Conf.
on Computer Vision and Pattern Recognition, San Diego, CA, Jun. 4–8,
1989, pp. 500–507.

[20] Y. Wu and Z. Hu, “PnP problem revisited,” Journal of Mathematical
Imaging and Vision, vol. 24, no. 1, pp. 131–141, Jan. 2006.

[21] A. Martinelli and R. Siegwart, “Observability properties and optimal
trajectories for on-line odometry self-calibration,” in Proc. of the IEEE
Conf. on Decision and Control, San Diego, CA, Dec. 13–15, 2006, pp.
3065–3070.

[22] A. Martinelli, “Using the distribution theory to simultaneously calibrate
the sensors of a mobile robot,” in Proc. of Robotics: Science and
Systems, Seattle, WA, Jun. 25–29, 2009.



16

[23] S. Wasielewski and O. Strauss, “Calibration of a multi-sensor system
laser rangefinder/camera,” in Proc. of the Intelligent Vehicles Symposium,
Detroit, MI, Sep. 25–26, 1995, pp. 472–477.

[24] R. Y. Tsai and R. K. Lenz, “A new technique for fully autonomous and
efficient 3D robotics hand/eye calibration,” IEEE Trans. on Robotics and
Automation, vol. 5, no. 3, pp. 345–358, Jun. 1989.

[25] N. Andreff, R. Horaud, and B. Espiau, “Robot hand-eye calibration using
structure-from-motion,” Int. Journal of Robotics Research, vol. 20, no. 3,
pp. 228–248, Mar. 2001.

[26] Y. Shiu and S. Ahmad, “Calibration of wrist-mounted robotic sensors
by solving homogeneous transform equations of the form AX = XB,”
IEEE Trans. on Robotics and Automation, vol. 5, no. 1, pp. 16–29, Feb.
1989.

[27] J. Chou and M. Kamel, “Finding the position and orientation of a sensor
on a robot manipulator using quaternions,” Int. Journal of Robotics
Research, vol. 10, no. 3, pp. 240–254, Jun. 1991.

[28] K. Daniilidis, “Hand-eye calibration using dual quaternions,” Int. Jour-
nal of Robotics Research, vol. 18, no. 3, pp. 286–298, Mar. 1999.

[29] A. A. Goshtasby and W. A. Gruver, “Design of a single-lens stereo
camera system,” Pattern Recognition, vol. 26, no. 6, pp. 923–937, Jun.
1993.

[30] G. Jang, S. Kim, and I. Kweon, “Single camera catadioptic stereo
system,” in Proc. of the Workshop on Omnidirectional Vision, Camera
Networks and Non-classical Cameras, Beijing, China, Oct. 21, 2005.

[31] A. Würz-Wessel and F. K. Stein, “Calibration of a free-form surface
mirror in a stereo vision system,” in Proc. of the IEEE Intelligent Vehicle
Symposium, Versailles, France, Jun. 17–21, 2002, pp. 471–476.

[32] M. Kanbara, N. Ukita, M. Kidode, and N. Yokoya, “3D scene recon-
struction from reflection images in a spherical mirror,” in Proc. of the Int.
Conf. on Pattern Recognition, Hong Kong, China, Aug. 20–24, 2006,
pp. 874–897.

[33] S. K. Nayar, “Sphereo: Determining depth using two specular spheres
and a single camera,” in Proc. of the SPIE Conf. on Optics, Illumination,
and Image Sensing for Machine Vision, Nov. 1988, pp. 245–254.

[34] K. H. Jang, D. H. Lee, and S. K. Jung, “A moving planar mirror based
approach for cultural reconstruction,” Computer Animation and Virtual
Worlds, vol. 15, no. 3–4, pp. 415–423, Jul. 2004.

[35] P. Sturm and T. Bonfort, “How to compute the pose of an object
without a direct view?” in Proc. of the Asian Conf. on Computer Vision,
Hyderabad, India, Jan. 13–16, 2006, pp. 21–31.

[36] R. K. Kumar, A. Ilie, J.-M. Frahm, and M. Pollefeys, “Simple calibration
of non-overlapping cameras with a mirror,” in Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition, Anchorage, AK, Jun. 24–26,
2008.

[37] J.-Y. Bouguet, “Camera calibration toolbox for matlab,” 2006. [Online].
Available: http://www.vision.caltech.edu/bouguetj/calibdoc/

[38] J. A. Hesch, A. I. Mourikis, and S. I. Roumeliotis, “Camera to
robot-body calibration using planar mirror reflections,” University of
Minnesota, Dept. of Comp. Sci. & Eng., MARS Lab, Tech. Rep. 2008-
001, Jul. 2008. [Online]. Available: http://www-users.cs.umn.edu/∼joel/

[39] N. Trawny and S. I. Roumeliotis, “Indirect Kalman filter for 3D attitude
estimation,” University of Minnesota, Dept. of Comp. Sci. & Eng.,
MARS Lab, Tech. Rep. 2005-002, Mar. 2005. [Online]. Available:
http://www-users.cs.umn.edu/ trawny/

[40] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, “Bundle
adjustment – a modern synthesis,” in Vision Algorithms: Theory and
Practice, vol. 1883. Springer-Verlag, 2000, pp. 298–372.

[41] D. Nistér, “An efficient solution to the five-point relative pose problem,”
in Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition,
Madison, WI, Jun. 16–22, 2003, pp. 195–202.

[42] M. Vergauwen and L. V. Gool, “Web-based 3D reconstruction service,”
Machine Vision and Applications, vol. 17, no. 6, pp. 411–426, Oct. 2006.

[43] J. Shi and C. Tomasi, “Good features to track,” in Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition, Washington, DC,
Jun. 27–Jul. 2, 1994, pp. 593–600.

[44] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004.


